Cho hàm số: f(x)=a(x+1)3+bxexf(x)=a(x+1)3+bxex. Tìm a, b biết: f′(0)=22f′(0)=22 và ∫01f(x)dx=5∫01f(x)dx=5
m) ∫pi6pi4cos2xsin3xsin(x+pi4)dx∫pi6pi4cos2xsin3xsin(x+pi4)dx
n) ∫0π2x−−√sinx−−√dx∫0π2xsinxdx
p) ∫12dxx(x2012+1)dx∫12dxx(x2012+1)dx
q) ∫03ln2dx(ex√3+2)2∫03ln2dx(ex3+2)2
r) ∫1eln2x+lnx(lnx+x+1)3dx∫1eln2x+lnx(lnx+x+1)3dx
s) ∫ln2ln3e2xex−1+ex−2√dx∫ln2ln3e2xex−1+ex−2dx
t) ∫0pi3x+sin2x1+cos2xdx∫0pi3x+sin2x1+cos2xdx
u)∫032x2+x−1x+1√dx∫032x2+x−1x+1dx
v) ∫01x2ln(1+x2)dx
Ai nhanh mk tik nha.