Phương pháp:
Biện luận số nghiệm của phương trình thông qua số giao điểm của hai đồ thị hàm số.
Phương pháp:
Biện luận số nghiệm của phương trình thông qua số giao điểm của hai đồ thị hàm số.
Cho hàm số y=f(x) xác định trên ℝ \ 0 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau:
Tìm tất cả các giá trị của tham số thực m để phương trình f(x)-m=0 có nghiệm duy nhất.
A. m ∈ 3 ; + ∞
B. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
C. m ∈ 3 ; + ∞
D. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
Cho hàm số xác định trên ℝ \ 0 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau
Tìm tất cả các giá trị thực của tham số m để phương trình f (x) = m có hai nghiệm thực phân biệt.
A. m ∈ 3 ; + ∞
B. m ∈ − ∞ ; 1 ∪ 3
C. m ∈ 3 ; + ∞
D. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
Cho hàm số y = f(x) xác định trên ℝ \ - 1 ; 1 , liên tục trên từng khoảng xác định và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số của m để phương trình f(x) =3m có ba nghiệm phân biệt:
A. - 1 < m < 2 3
B. m < - 1
C. m ≤ - 1
D. m < - 3
Cho hàm số y = f(x) xác định trên ℝ \ − 1 ; 1 , liên tục trên từng khoảng xác định và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số của m để phương trình f(x) = 3m có ba nghiệm phân biệt:
A. − 1 < m < 2 3 .
B. m < − 1.
C. m ≤ − 1.
D. m < − 3.
Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình f 2 cos x + m - 2018 f cos x + m - 2019 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn 0 ; 2 π là
A. 1
B. 2
C. 3
D. 5
Cho hàm số y = f(x) xác định trên R \ {1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm thực phân biệt là
A. 0.
B. 3.
C. 2.
D. 1.
Cho hàm số y = f(x) xác định trên tập hợp ℝ \ 0 liên tục trên khoảng xác định có bảng biến thiên như sau. Tìm tất cả các giá trị của m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m = 2
B. m < 1
C. m = 2 hoặc m < 1
D. m ≤ 1 hoặc m = 2
Cho hàm số y=f(x) xác định, liên tục trên ℝ và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f x − 2 m + 1 có bốn nghiệm phân biệt?
A. − 1 2 ≤ m ≤ 0
B. − 1 2 < m < 0
C. − 1 < m < − 1 2
D. − 1 ≤ m ≤ − 1 2
Cho hàm y = f ( x ) số xác định trên ℝ \ ± 1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau.
Tìm tập hợp tất cả các giá trị của tham số m để phương trình f x = m vô nghiệm.
A. − 2 ; 1 .
B. (-∞;-2]
C. [1;+ ∞).
D. [-2;1).