Giả sử f(x) là một hàm số bất kỳ liên tục trên khoảng α ; β và a , b , c , b + c ∈ α ; β . Mệnh đề nào sau đây sai?
A. ∫ a b f x d x = ∫ a c f x d x + ∫ c b f x d x
B. ∫ a b f x d x = ∫ a b + c f x d x - ∫ a c f x d x
C. ∫ a b f x d x = ∫ a b + c f x d x + ∫ b + c b f x d x
D. ∫ a b f x d x = ∫ a c f x d x - ∫ b c f x d x
Trong không gian Oxyz, cho hai mặt phẳng ( α ): x+y+z-1=0 và ( β ): 2x-y+mz-m+1=0, với m là tham số thực. Giá trị của m để ( α ) ⊥ ( β ) là
A. -1
B. 0
C. 1
D.-4
Phương trình 2 sin 2 2 x − 5 sin 2 x + 2 = 0 có hai họ nghiệm dạng x = α + kπ , x = β + kπ 0 < α , β < π . Khi đó tích αβ là
A. 5 π 2 36
B. 5 π 2 144
C. - 5 π 2 36
D. - 5 π 2 144
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng α : x + y - z + 1 = 0 v à β : - 2 x + m y + 2 z - 2 = 0 . Tìm m để mặt phẳng (α) song song với mặt phẳng (β).
A. m = 2
B. m = 5
C. Không tồn tại
D. m = -2
Cho hàm số y = f(x) liên tục trên [a;b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ α ; β ] ∀ x ∈ [ a ; b ] hơn nữa f(u) liên tục trên đoạn [a;b]. Mệnh đề nào sau đây là đúng?
A. ∫ a b f ( u ( x ) ) u ' d x = ∫ u ( a ) u ( b ) f ( u ) d u
B. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
C. ∫ u ( a ) u ( b ) f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
D. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( x ) d x
Trong không gian Oxyz, cho hai mặt phẳng ( α ) : x + 2 y - z - 1 = 0 và ( β ) : 2 x + 4 y - m z - 2 = 0 . Tìm m để hai mặt phẳng α , β song song với nhau
A. m = -2
B. Không tồn tại m
C. m = 1
D. m = 2
Trong không gian Oxyz, cho hai mặt phẳng α : x + 2 y − z − 1 = 0 và β : 2 x + 4 y − m z − 2 = 0. Tìm m để hai mặt phẳng α v à β song song với nhau.
A. m = 1
B. Không tồn tại m
C. m = -2
D. m = 2
Cho 0<a,b,c,x ≢ 1 . Biết log a x = α , log b x = β , log c x = γ , tính log a b c x theo α , β , γ .
A. log a b c x = α + β + γ
B. log a b c x = α β γ
C. log a b c x = α β + β γ + γ α α β γ
D. log a b c x = α β γ α β + β γ + γ α
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2