Cho hàm số f(x) có đạo hàm và liên tục trên đoạn [4;8] và f ( x ) ≠ 0 ∀ x ∈ [ 4 ; 8 ] Biết rằng
∫ 4 8 [ f ' ( x ) ] 2 f ( x ) 4 d x = 1 và f(4) = 1/4; f(8) = 1/2; tính F(6)
Cho hàm số f(x) liên tục trên ℝ và có một nguyên hàm là F(x). Biết F(2) = –7. Giá trị của F(4) là:
Biết hàm số f(x) có đạo hàm f'(x) liên tục trên ℝ và f(1)= e 2 , ∫ 1 ln 2 f ' ( x ) d x = 4 - e 2 Tính f(ln2).
Cho hàm số f(x) liên tục trên ℝ và f(x) ≠ 0 với mọi x ∈ ℝ . f ' ( x ) = ( 2 x + 1 ) f 2 ( x ) và f(1)=-0,5. Biết rằng tổng f(1)+f(2)+f(3)+...+f(2017)= a b với a b tối giản.
Mệnh đề nào dưới đây đúng?
Cho hàm số y=f(x) có đạo hàm liên tục trên R thỏa mãn x f ( x ) . f ' ( x ) = f 2 ( x ) - x , ∀ x ∈ ℝ và f(2)=1 .Tích phân bằng
A. 3 2
B. 4 3
C. 2
D. 4
Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0) = 3; f(2) = 12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 Tính f(1)
A. 27/4
B. 25/4
C. 9/2
D. 15/4
Cho hàm số y = f(x) xác định và liên tục trên ℝ \ { 0 } thỏa mãn: x 2 f 2 ( x ) + ( 2 x - 1 ) f ( x ) = x f ' ( x ) - 1 đồng thời f ( 1 ) = - 2 Tính ∫ 1 2 f ( x ) d x
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số f(x) liên tục trên ℝ và F(x) là nguyên hàm của f(x), biết ∫ 0 9 f ( x ) d x = 9 , F(0)=3. Tính F(9).
A. -6.
B. 6.
C. 12.
D. -12.