Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0)=3,f(2)=12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 . Tính f(1).
A. 27 4
B. 25 4
C. 9 2
D. 15 4
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1], f(x) và f' (x) đều nhận giá trị dương trên đoạn [0;1] và thỏa mãn f(0)=2, ∫ 0 1 f ' ( x ) . [ f ( x ) ] 2 + 1 ] dx = 2 ∫ 0 1 f ' ( x ) . f ( x ) dx . Tính ∫ 0 1 [ f ( x ) ] 3 dx ?
A. 15/4.
B. 15/2.
C. 17/2.
D. 19/2.
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [1;2] thỏa mãn ∫ 1 2 ( x - 1 ) 2 f ( x ) d x = - 1 3 , f(2) = 0 và ∫ 1 2 f ' ( x ) 2 d x = 7 . Tính tích phân ∫ 1 2 f ( x ) d x
A. I = 7 5
B. I = - 7 5
C. I = - 7 20
D. I = 7 20
Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;3] thoả mãn f(0)=2,f(3)=8 và ∫ 0 3 ( f ' ( x ) ) 2 f ( x ) d x = 8 3 . Tính f(2).
A. 50/9.
B. 49/9.
C. 47/9.
D. 52/9
Cho hàm số f(x) liên tục và có đạo hàm trên R \ 1 3 thỏa mãn các điều kiện sau: f ( x ) ( 3 x + 2 ) + f ' ( x ) ( 3 x - 1 ) = x 2 + 1 ; f ( 0 ) = - 3 Khi đó giá trị của ∫ 1 2 f ( x ) d x nằm trong khoảng nào dưới đây?
A. (0;1)
B. (1;2)
C. (3;4)
D. (2;3)
Xét hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn điều kiện f(1)=1 và f(2)=4.
Tính J = ∫ 1 2 f ' ( x ) + 2 x - f ( x ) + 1 x 2 d x
A. J = 1 + ln 4
B. J = 4 - ln 2
C. J = ln 2 - 1 2
D. J = 1 2 + ln 4
Cho hàm số y=f(x) có đạo hàm liên tục trên (1;+∞) và thỏa mãn x f ' ( x ) - 2 f ( x ) . l n x = x 3 - f ( x ) ,∀x∈(1;+∞); biết f ( e 3 ) = 3 e . Giá trị f(2) thuộc khoảng nào dưới đây
A. ( 12 ; 25 / 2 )
B. ( 13 ; 27 / 2 )
C. ( 23 / 2 ; 12 )
D. ( 14 ; 29 / 2 )
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ] d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số f (x) nhận giá trị dương, có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) thỏa mãn 2 f ' ( x ) ( f ( x ) ) 2 = f ( x ) ( x + 2 ) x 3 , ∀ x > 0 và f ( 1 ) = 1 3 . Tích phân ∫ 1 2 1 ( f ( x ) ) 2 d x bằng
A. 11 2 +ln2
B. - 1 2 +ln2
C. 3 2 +ln2
D. 7 2 +ln2