Cho hàm số f(x) có đạo hàm f'(x)= x ( x - 1 ) 2 ( x - 2 ) 3 ,∀x∈R. Số điểm cực trị của hàm số đã cho là
A. 3
B. 2.
C. 5
D. 1
Cho hàm số f(x) có đạo hàm f ' ( x ) = x ( x + 1 ) ( x + 2 ) 3 , ∀ x ∈ R . Số điểm cực trị của hàm số y = f ( x 2 - 2 x ) là
A. 3.
B. 2.
C. 5.
D. 4.
Cho hàm số y=f(x) có đạo hàm f ’ ( x ) = x 2 ( x - 1 ) ( x + 2 ) 3 ( 2 - x ) . Số điểm cực trị của hàm số đã cho bằng
A. 7
B. 2
C. 4
D. 3
Cho hàm số y=f(x) có đạo hàm là f′(x)=(x−1)(x−2)2(x−3). Số điểm cực trị của hàm số là
A. 3
B. 1
C. 2
D. 0
Cho hàm số y= f(x) có đạo hàm là f'(x)=(x-1) ( x - 2 ) 2 (x-3). Số điểm cực trị của hàm số là
A. 0
B. 2
C. 1
D. 3
Cho hàm số y=f(x) có đạo hàm là
f ' ( x ) = ( x − 1 ) 2 ( x + 2 ) 3 ( 3 − x ) . Khi đó số điểm cực trị của hàm số là
A. 0
B. 1
C. 2
D. 3
Cho hàm số f(x) có đạo hàm f ’ ( x ) = x ( x - 1 ) ( x + 2 ) 2 . Số điểm cực trị của hàm số đã cho là:
A. 2
B. 1
C. 4
D. 3
Cho hàm số y=f(x) liên tục trên R, có đạo hàm f'(x)= x ( x - 1 ) 2 ( x + 1 ) 2 . Hàm số đã cho có bao nhiêu điểm cực trị
A. Có đúng 3 điểm cực trị
B. Không có điểm cực trị
C. Có đúng 1 điểm cực trị
D. Có đúng 2 điểm cực trị
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.