Cho hàm số f ( x ) = x + 3 - 2 x - 1 k h i x > 1 a x + 2 k h i x ⩽ 1 . Để hàm số liên tục tại x=1 thì a nhận giá trị là
A.1/2
B.1
C.-7/4
D.0
Cho hàm số
f(x)= x 2 + 4 - 2 x 2 khi x ≠ 0 2 a - 5 4 khi x = 0
Tìm giá trị thực của tham số a để hàm số f(x) liên tục tại x=0
A. a= -3/4
B. a= 4/3
C. a= -4/3
D. a= 3/4
Cho hàm số y=f(x) có đạo hàm liên tục trên R, với f x > 0 , ∀ x ∈ ℝ và f 0 = 1 . Biết rằng f ' x + 3 x x − 2 f x = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4 .
B. − e 6 < m < − 1.
C. − e 4 < m < − 1.
D. 0 < m < e 4 .
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số f ( x ) = x 2 + 4 - 2 x 2 k h i x ≠ 0 2 a - 5 4 k h i x = 0 . Tìm giá trị thực của tham số để hàm số f(x) liên tục tại x=0.
A. .
B. .
C. .
D. .
Cho hàm số x 2 + x + 1 k h i x ≥ 1 a x + 2 k h i x < 1 . Khi hàm số f(x) liên tục tại điểm x=1thì giá trị của a bằng
A.3
B.-1
C.0
D.1
chỉ mik cách lập nhóm nha
Trích một số bài toán trong đề:
+ Trên mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa mãn điều kiện /z/ = 2 là:
A. Đường tròn tâm O, bán kính R = 2
B. Đường tròn tâm O, bán kính R = 4
C. Đường tròn tâm O, bán kính R = 1/2
D. Đường tròn tâm O , bán kính R = căn 2
+ Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây đúng?
A. Hàm số y = f(x) có giá trị cực đại bằng 0
B. Giá trị lớn nhất của hàm số y = f(x) trên tập R là 1
C. Hàm số y = f(x) đạt cực đại tại x = 0 và cực tiểu tại x = -1
D. Hàm số y = f(x) có đúng một cực trị
+ Tìm phần thực của số phức (2 + 3i).i^10
Tìm tất cả các giá trị của m để hàm số f x = 1 − x − 1 + x x khi x < 0 m + 1 − x 1 + x khi x ≥ 0 liên tục tại x=0
A. m = 1
B. m = -2
C. m = -1
D. m = 0
Cho hàm số f ( x ) = sin 5 x 5 x k h i x ≠ 0 a + 2 k h i x = 0 . Tìm a để f(x) liên tục tại x=0
A.1
B. -1
C.-2
D.2