Đáp án A
Xét g x = x 4 − 4 x 3 + 4 x 2 + a
g ' x = 4 x 3 − 12 x 2 + 8 x = 0 ⇔ x = 0 , 1 , 2
Đáp án A
Xét g x = x 4 − 4 x 3 + 4 x 2 + a
g ' x = 4 x 3 − 12 x 2 + 8 x = 0 ⇔ x = 0 , 1 , 2
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) = 2 x - 4 - 6 - x trên [-3;6]. Tổng M+m có giá trị là
A. -12
B. -6
C. 18
D. -4
Cho hàm số f x = x 4 − 4 x 3 + 4 x 2 + a . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn [0;2]. Có bao nhiêu số nguyên a thuộc đoạn [-3;3] sao cho M ≤ 2 m ?
A. 3
B. 7
C. 6
D. 5
Cho hàm số f x = x 4 − 4 x 3 + 4 x 2 + a . Gọi M, m lần lượt là các giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên đoạn [ 0;2] Có bao nhiêu số nguyên a thuộc đoạn − 3 ; 3 sao cho M ≤ 2 m ?
A. 3
B. 7
C. 6
D. 5
Cho f x là hàm đa thức thỏa mãn f x - x f 1 - x = x 4 - 5 x 3 + 12 x 2 - 4 ∀ x ∈ ℝ . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f x trên tập D = x ∈ ℝ | x 4 - 10 x 2 + 9 ≤ 0 . Giá trị của 21 m + 6 M + 2019 bằng
A. 2235.
B. 2319.
C. 3045.
D. 3069.
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x) = x 2 - 16 x trên đoạn [-4;-1]. Tính T = M + m.
A. T = 32.
B. T = 16.
C. T = 37.
D. T = 25.
Cho hàm số y=f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên [-1;3]. Giá trị M+m bằng
A. 1
B. 2
C. 3
D. 5
Cho hàm số y = x 4 + a x + a x + 1 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn 1 ; 2 . Có bao nhiêu giá trị nguyên của a để M ≥ 2 m .
A. 15
B. 14
C. 17
D. 16
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f ( x ) + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tính tổng T = a + b.
A. T = 2
B. T = 1
C. T = -1
D. T = -2