Cho hàm số bậc ba y = f x có đồ thị như hình vẽ bên. Có bao nhiêu số tự nhiên m ≤ 2018 để hàm số y = f m - x + m - 1 x đồng biến trên khoảng (-1;1)
A. 2
B. 3
C. 1
D. 2018
Cho hàm số y=f(x) có đồ thị của hàm số y=f'(x) như hình vẽ bên. Có bao nhiêu số nguyên m để hàm số y=f(m-x)+(m-1)x đồng biến trên khoảng (-1;1).
A. 1
B. 3
C. Vô số
D. 2
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị hàm số y = f '(x) như hình vẽ bên. Xét các khẳng định sau:
(I) Hàm số y = f(x) có ba cực trị.
(II) Phương trình f(x) = m + 2018 có nhiều nhất ba nghiệm.
(III) Hàm số y = f(x + 1) nghịch biến trên khoảng (0;1) .
Số khẳng định đúng là:
A. 1
B. 3
C. 2
D. 0
Cho hàm số f (x) có đồ thị của hàm số f'(x) như hình vẽ bên
Có bao nhiêu số nguyên m>-10 để hàm số y=f(x+m) nghịch biến trên khoảng (0;2)?
A. 2.
B. 7.
C. 5.
D. 9.
Cho hàm số f(x) xác định trên R và hàm số y = f’(x) có đồ thị như hình bên dưới:
Xét các khẳng định sau:
(I) Hàm số y = f(x) có ba cực trị.
(II) Phương trình f(x) = m + 2018 có nhiều nhất ba nghiệm.
(III) Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).
Số khẳng định đúng là:
A. 1
B. 2
C. 0
D. 3
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây
A. − 1 ; 3
B. 0 ; + ∞
C. − 2 ; 0
D. − ∞ ; − 2
Cho hàm số y=f(x) có đạo hàm trên R và bảng xét dấu của đạo hàm như hình vẽ bên.
Có bao nhiêu số nguyên m để hàm số y = f x 2 + 4 x + m nghịch biến trên khoảng (−1;1)?
A. 3.
B. 1.
C. 0.
D. 2.
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ bên. Tất cả giá trị thực của tham số m để hàm số y = f ( x - 1 ) - m - 1 có 3 điểm cực trị?
A. -1<m<5
B. - 1 ≤ m ≤ 5
C. m ≥ - 1 hoặc m ≤ - 5
D. m>-1 hoặc m<-5