Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mì_Xào_Tỏi

Cho hai số thực dương x y thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của A=xy+\(\dfrac{1}{xy}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
21 tháng 6 2021 lúc 16:01

Có: \(A=16xy+\dfrac{1}{xy}-15xy\)

Áp dụng bdt Co-si, ta có:

\(16xy+\dfrac{1}{xy}\ge2\sqrt{16xy.\dfrac{1}{xy}}=8\)

Có \(x+y\ge2\sqrt{xy}< =>xy\le\dfrac{1}{4}\)

=> A \(\ge8-15.\dfrac{1}{4}=\dfrac{17}{4}\)

Dấu "=" xảy ra <=> x = y= \(\dfrac{1}{2}\)


Các câu hỏi tương tự
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Thị Ngọc
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
Hoai Nam Nguyen
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết