Cho số phức z. Gọi A, B lần lượt là các điểm trong mặt phẳng Oxy biểu diễn các số phức z và 1 + i z . Tính z biết diện tích tam giác OAB bằng 8.
A. z = 2 2 .
B. z = 4 2
C. z = 2
D. z = 4
Cho số phức z. Gọi A, B lần lượt là các điểm trong mặt phẳng (Oxy) biểu diễn các số phức z và 1 + i z . Tính |z| biết diện tích tam giác OAB bằng 8
A. z = 2 2
B. z = 4 2
C. z = 2
D. z = 4
Gọi A,B,C lần lượt là điểm biểu diễn của các số phức z, iz và 2z. Biết diện tích tam giác ABC bằng 4. Môđun của số phức z bằng
A. 2
B. 8
C. 2
D. 2 2
Gọi A,B,C lần lượt là điểm biểu diễn của các số phức z, iz và 2z. Biết diện tích tam giác ABC bằng 4. Môđun của số phức z bằng
A. 2
B. 8.
C. 2.
D. 2 2
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Cho số phức z thay đổi thỏa mãn z - 3 - 4 i ≤ 2 . Đặt w=(z-2)(2-2i)+1, tập hợp tất cả các điểm biểu diễn số phức w là một hình tròn có diện tích bằng
A. 8 π
B. 12 π
C. 16 π
D. 32 π
Cho số phức z thoả mãn |z-1|=2. Biết tập hợp các điểm biểu diễn số phức w= ( 1 + i 3 ) z+2 là một đường tròn. Tính bán kính r của đường tròn đó.
A. r= 8.
B. r= 4.
C. r= 22.
D. r= 2
Gọi S là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 2 - 2 i ≤ 5 . Kí hiệu z 1 , z 2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = z 2 + 2 z 1 .
A. P = 2 6
B. P = 3 2
C. P = 33
D. P = 8
Cho số phức z thoả mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Môđun của số phức z - 2 - i bằng
A. 5
B. 9
C. 25
D. 5
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5