Đáp án B.
Ta có:
z 1 z 2 ¯ = z 1 ¯ z 2 = 4 + i − 2 − 3 i = 4 + i 2 − 3 i 3 i − 2 3 i + 2 = − 11 + 10 i 13 = − 11 13 + 10 13 i
⇒ phần ảo của số phức là 10 13 .
Đáp án B.
Ta có:
z 1 z 2 ¯ = z 1 ¯ z 2 = 4 + i − 2 − 3 i = 4 + i 2 − 3 i 3 i − 2 3 i + 2 = − 11 + 10 i 13 = − 11 13 + 10 13 i
⇒ phần ảo của số phức là 10 13 .
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn z - 2 + i + z + 1 - i = 13 . Tìm giá trị nhỏ nhất m của biểu thức z - 2 + i
A. m = 1
B. m = 2 13 13
C. m = 13 13
D. m = 1 13
Cho z là số phức thỏa mãn điều kiện 2 z - 1 1 + i + z + 1 1 - i = 2 - 2 i . Tính tổng bình phương phần thực và phần ảo của số phức w = 9 z 2 + 6 z + 1 .
A. 25
B. 1
C. 49
D. 41
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Tìm phần thực và phần ảo của số phức z, biết ( 2 + i ) ( 1 + i ) + z ¯ = 4 - 2 i .
A. Phần thực bằng –1 và Phần ảo bằng 3
B. Phần thực bằng 1 và Phần ảo bằng 3
C. Phần thực bằng –3 và Phần ảo bằng 1
D. Phần thực bằng –3 và Phần ảo bằng –1
Tìm phần thực và phần ảo của số phức z, biết ( 2 + i ) ( 1 + i ) + z ¯ = 4 - 2 i .
A. Phần thực bằng –1 và Phần ảo bằng 3
B. Phần thực bằng 1 và Phần ảo bằng 3
C. Phần thực bằng –3 và Phần ảo bằng 1
D. Phần thực bằng –3 và Phần ảo bằng –1
Cho số phức z thỏa mãn z ¯ = ( 2 + i ) 2 ( 1 - 2 i ) . Khi đó tổng bình phương phần thực và phần ảo của số phức z là
A. 18
B. 27
C. 61
D. 72
Trong các số phức z thỏa mãn | ( 12 - 5 i ) z + 17 + 7 i z - 2 - i | = 13 . Tìm giá trị nhỏ nhất của | z |
A . 3 13 26 .
B . 5 5 .
C . 1 2 .
D . 2 .
Cho số phức z thỏa mãn ( 3 + i ) z = 13 − 9 i . Tìm tọa độ của điểm M biểu diễn z.
A. M = ( − 3 ; 4 )
B. M = ( 3 ; − 4 )
C. M = ( − 3 ; − 4 )
D. M = ( 1 ; − 3 )
Tìm phần thực a và phần ảo b của số phức z, biết 2 - i 1 + i + z ¯ = 4 - 2 i
A. a = - 1 , b = 3
B. a = 1 , b = 3
C. a = - 3 , b = 1
D. a = - 3 , b = - 1