Phần thực và phần ảo của z 1 . z 2 tương ứng là 26 và 7.
Phần thực và phần ảo của z 1 . z 2 tương ứng là 26 và 7.
a) Cho hai số phức z1 = 1 + 2i ; z2 = 2 – 3i . Xác định phần thực và phần ảo của số phức z1 – 2z2 .
b) Cho hai số phức z1 = 2 + 5i ; z2 = 3 – 4i . Xác định phần thực và phần ảo của số phức z1.z2
Biết rằng hai số phức z 1 , z 2 thỏa mãn | z 1 - 3 - 4 i | = 1 và | z 2 - 3 - 4 i | = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a - 2 b = 12 . Giá trị nhỏ nhất của P = | z - z 1 | + | z - 2 z 2 | + 2 bằng:
Tìm phần thực và phần ảo của số phức z, biết z ¯ = ( 5 + i ) 2 ( 1 - 5 i )
A. Phần thực bằng -14 và phần ảo bằng 2 5
B. Phần thực bằng 14 và phần ảo bằng 2 5 i
C. Phần thực bằng 14 và phần ảo bằng 2 5
D. Phần thực bằng -14 và phần ảo bằng 2 5 i
Cho số phức z=2+4i. Tính hiệu phần thực và phần ảo của z.
A. 2
B. 2 5
C. -2
D. 6
Cho số phức z = 2 + 4i. Tính hiệu phần thực và phần ảo của z.
A. 2.
B. 2 5 .
C. -2.
D. 6.
Cho số phức z = 3 - 4i Phần thực và phần ảo số phức z là
A. Phần thực bằng 3 và phần ảo bằng -4i
B. Phần thực bằng 3 và phần ảo bằng 4.
C. Phần thực bằng 3 và phần ảo bằng 4i
D. Phần thực bằng 3 và phần ảo bằng -4.
Cho hai số phức z 1 = 1-3i và z 2 = -2-5i . Tìm phần ảo b của số phức z = z 1 - z 2
A. b = -2
B. b = 2
C. b = 3
D. b = -3
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?
A. 8i
B. 4
C. -8
D. 8