Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ:
a) Đối xứng với nhau qua trục Ox ;
b) Đối xứng với nhau qua trục Oy;
c) Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba;
d) Đối xứng với nhau qua gốc tọa độ.
Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ: Đối xứng với nhau qua gốc tọa độ
Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ: Đối xứng với nhau qua trục Ox
Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ: Đối xứng với nhau qua trục Oy
Trong mặt phẳng ( α ) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ( α ) ta lấy một điểm S tùy ý, dựng mặt phẳng ( β ) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng ( β ) cắt SB, SC, SD lần lượt tại B’ , C’, D’. Chứng minh rằng các điểm A, B, C, D, B’, C’ , D’ luôn luôn thuộc một mặt cầu cố định.
Trong mặt phẳng ( α ) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ( α ) ta lấy một điểm S tùy ý, dựng mặt phẳng ( β ) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng ( β ) cắt SB, SC, SD lần lượt tại B’ , C’, D’. Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành.
Cho hai mặt phẳng cắt nhau ( α ) và ( β ) . M là một điểm nằm ngoài hai mặt phẳng trên. Qua M dựng được bao nhiêu mặt phẳng đồng thời vuông góc với ( α ) và ( β ) ?
A. Vô số
B. 1
C. 2
D. 0
Cho hai mặt phẳng α : 3 x - 2 y + 2 z + 7 = 0 , β : 5 x - 4 y + 3 z + 1 = 0 . Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả α và β là:
A. 2x - y - 2z =0
B. 2x - y + 2z =0
C. 2x + y - 2z + 1=0
D. 2x + y - 2z = 0
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): x+2y-z-1=0 và (β): 2x+4y-mz-2=0. Tìm m để hai mặt phẳng (α) và (β) song song với nhau.
A. m=1
B. Không tồn tại m
C. m=-2
D. m=2.