\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+\left(\frac{x}{4y}+\frac{y}{x}-2\right)\)
Áp dụng BĐT Cô - Si cho các số dương :
\(\frac{x}{4y}+\frac{y}{x}\ge2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\ge\frac{7.2y}{4y}=\frac{7}{2}\) do \(x\ge2y\)
Do đó : \(P\ge\frac{7}{2}+1-2=\frac{5}{2}\)
Vậy \(P_{min}=\frac{5}{2}\) khi x\(=2y\)
Chúc bạn học tốt !!!