P = \(\frac{x-y}{x+y}\)
P2 = \(\frac{x^2+y^2-2xy}{x^2+y^2+2xy}\)
= \(\frac{\frac{50}{7}xy-2xy}{\frac{50}{7}xy+2xy}\)
= \(\frac{\left(\frac{50}{7}-2\right)xy}{\left(\frac{50}{7}+2\right)xy}\)
= \(\frac{36}{7}\frac{7}{64}\)= \(\frac{36}{64}\)
=>
P = \(\frac{6}{8}\)= \(\frac{3}{4}\)
P = \(-\frac{6}{8}\)= \(-\frac{3}{4}\)