Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đòan đức duy

cho hai số dương a và thỏa mãn a*b=1. Tìm giá trị nhỏ nhất của biểu thức B=1/a + 1/b +2/a+b

titanic
15 tháng 9 2018 lúc 8:14

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và \(x+y\ge2.\sqrt{xy}\)( dấu ''='' xảy ra ở 2 bđt này khi x=y )

Ta có \(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge\frac{4}{a+b}+\frac{2}{a+b}=\frac{6}{a+b}\)

\(=\frac{6}{a+b}+\frac{3\left(a+b\right)}{2}-\frac{3.\left(a+b\right)}{2}\ge2\sqrt{\frac{6}{a+b}.\frac{3\left(a+b\right)}{2}}-\frac{3.2.\sqrt{ab}}{2}\)

\(=2\sqrt{9}-3.\sqrt{ab}=6-3=3\)

Dấu ''='' xảy ra khi \(\hept{\begin{cases}\frac{6}{a+b}=\frac{3.\left(a+b\right)}{2}\\a=b\\a.b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{6}{2a}=\frac{3.2a}{2}\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a^2=12\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow a=b=1\)


Các câu hỏi tương tự
Lê Trọng Bằng
Xem chi tiết
trương vũ
Xem chi tiết
Qasalt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Điền
Xem chi tiết
Nguyen Xuan Mai
Xem chi tiết
Ah Min
Xem chi tiết
Nguyễn Long Vượng
Xem chi tiết
Uyên Hoàng
Xem chi tiết