b. Đồ thị đt đề cho là y=6
PTGD 2 đt đầu bài với đt câu b là: \(\left\{{}\begin{matrix}2x=6\\x-1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\rightarrow A\left(3;6\right)\\x=7\rightarrow B\left(7;6\right)\end{matrix}\right.\)
b. Đồ thị đt đề cho là y=6
PTGD 2 đt đầu bài với đt câu b là: \(\left\{{}\begin{matrix}2x=6\\x-1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\rightarrow A\left(3;6\right)\\x=7\rightarrow B\left(7;6\right)\end{matrix}\right.\)
trong mặt phẳng tọa độ Oxy cho Parabol (P) có pt y=\(\dfrac{-x^2}{2}\)
và đường thẳng (d) có pt y=x+m
1) Tìm tọa độ điểm M thuộc parabol (P) biết điểm M có tung độ bằng -8.
2) TimfM đề đường thẳng (d) cắt (P) tại hai điểm phân biệt A,B với A(X1;Y1)và B(X2;Y2) sao cho (X1+Y1)(X2+Y2)=\(\dfrac{33}{4}\)
Cho (P): y= x2 và (d): -x+2
a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm của (P) và (d)
b) Xác định m để (P), (d) và đường thẳng (d'): y=5mx +6 cùng ik qa một điểm
Giúp với mọi ngừi ơi!!!!!!
Cho hàm số: y=(m+4)x-m + 6 (d)
a, Tìm các giá trị của m để hàm số đồng biến, nghịch biến
b, tìm giá trị của m, biết rằng đường thẳng (d) đi qua điểm A(-1;2). Vẽ đồ thị của hàm số với giá trị tìm được của m
Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Từ một điểm M tùy ý trên dây BC, kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại P và Q. Gọi D là điểm đối xứng của M qua đường thẳng PQ.
Chứng minh: D nằm trên đường tròn (O).
Cho tam giác ABC nhọn, AB<AC và nội tiếp (O). D là điểm đối xứng với A qua O. Tiếp tuyến với O tại D cắt BC tại E. Đường thẳng DE lần lượt cắt AB, AC tại K, L. Đường thẳng qua A song song với EO cắt DE tại F.
Đường thẳng qua D song song với EO lần lượt cắt AB, AC tại M, N. Chứng minh rằng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.
Cho tam giác ABC nhọn (AB>AC),nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C cắt nhau . Gọi H là giao điểm của OM và BC .Từ M kẻ đường thẳng song song với AC,đường thẳng song song cắt tại E và F (E thuộc cung nhỏ BC),cắt BC tại I ,cắt AB tại K.
a)Chứng minh:MO⊥BC và ME.MF=MH.MO
b)Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp.Từ đó suy ra năm điểm M,B,K,O,C cùng thuộc một đường tròn.
Cho đường tròn (O; R), một điểm A nằm ngoài đường tròn, một đường thẳng d vuông góc với OA tại A, đường thẳng OA cắt (O) tại B và C (B nằm giữa O và A). Từ C vẽ tia Cx cắt (O) tại D và cắt d tại E.
a) Chứng minh rằng CB.CA = CD.CE
b) Cho ACE=30 độ , OA = 2R. Tính CE và AE theo R
Cho đường tròn đường kính AB, C là một điểm trên đường kính AB. Trên đường tròn lấy điểm D,gọi M là một điểm chính giữa cung BD. Đường thẳng MC cắt đường tròn tại E, đường thẳng DE cắt AM tại K. Đường thẳng đi qua C và song song với AD cắt DE tại F. Chứng minh rằng: a) Tứ giác AKCE nội tiếp một đường tròn
b) CK vuông góc AD
c) CF = CB
Cho đường tròn (O) tiếp xúc với hai cạnh Mx, My của góc xMy tại A và B. Từ A vẽ tia song song với MB cắt đường tròn (O) tại C. Đoạn MC cắt đường tròn (O) tại E. Hai đường thẳng AE, MB cắt nhau tại K. Chứng minh K là trung điểm của MB.