Cho hai hàm số: y=2x và y=x-1
a, Vẽ đồ thị của hai hàm số đó trên cùng một hệ trục tọa độ Oxy
b, Đường thẳng song song với trục ox, cắt Oy tại điểm có tung độ bằng 6, cắt các đường thẳng: y=2x và y=x-1 lần lượt ở A và B. Tìm tọa độ các điểm A và B
trong mặt phẳng tọa độ Oxy cho Parabol (P) có pt y=\(\dfrac{-x^2}{2}\)
và đường thẳng (d) có pt y=x+m
1) Tìm tọa độ điểm M thuộc parabol (P) biết điểm M có tung độ bằng -8.
2) TimfM đề đường thẳng (d) cắt (P) tại hai điểm phân biệt A,B với A(X1;Y1)và B(X2;Y2) sao cho (X1+Y1)(X2+Y2)=\(\dfrac{33}{4}\)
Cho đường tròn (O; R), một điểm A nằm ngoài đường tròn, một đường thẳng d vuông góc với OA tại A, đường thẳng OA cắt (O) tại B và C (B nằm giữa O và A). Từ C vẽ tia Cx cắt (O) tại D và cắt d tại E.
a) Chứng minh rằng CB.CA = CD.CE
b) Cho ACE=30 độ , OA = 2R. Tính CE và AE theo R
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB, AC với dường tròn (O). M là 1 điểm trên dây BC, đường thẳng kẻ qua M vuông góc với OM cắt tia AB, AC lần lượt ở D và E. Chứng minh:
a, 4 điểm B, D, M, O cùng thuộc 1 đường tròn
b, Tứ giác OMEC nội tiếp
c, MD = ME
Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Từ một điểm M tùy ý trên dây BC, kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại P và Q. Gọi D là điểm đối xứng của M qua đường thẳng PQ.
Chứng minh: D nằm trên đường tròn (O).
Cho đường tròn (O;R) và điểm M cố định nằm ngoài (O;R). Từ M kẻ các tiếp tuyến MA, MB tới (O;R) (A, B là các tiếp điểm). Đường thẳng (d) bất kì qua M và cắt (O;R) tại hai điểm phân biệt C, D (C nằm giữa M và D). Gọi N là giao điểm của AB và CD.
a) Chứng minh tứ giác OAMB nội tiếp
b) Chứng minh rằng ΔANC và ΔDNB đồng dạng, ΔAMC và ΔDMA đồng dạng
c) Chứng minh: \(\dfrac{MC}{MD}=\dfrac{NC}{ND}\)
Cho hàm số: y=(m+4)x-m + 6 (d)
a, Tìm các giá trị của m để hàm số đồng biến, nghịch biến
b, tìm giá trị của m, biết rằng đường thẳng (d) đi qua điểm A(-1;2). Vẽ đồ thị của hàm số với giá trị tìm được của m
cho đường tròn (O,R) đường kính BC . vẽ đường thẳng d là tiếp tuyến tại B của đường tròn (O). Trên đường thẳng d, lây ddiiemr A sao cho AB>OB. Từ điểm A vẽ tiếp tuyến thứ hai với (O),tiếp điểm I .a) C/M AB vuông góc BC và BI vuông góc với OA b)qua điểm I vẽ đường thẳng vuông góc với BC tại H-C/M tam giác IBC là tam giác vuông và IBbình=BH.BC c)vẽ tiếp tuyến tại C của đường tròn (O)cắt AI tại D d)chứng minh rằng BC bình =4.AB.CD
cho (O) , A nằm ngoài (O) . đường thẳng d đi qua A cắt (O) tại B,C sao cho B nằm giữa , d không đi qua O . kẻ đường thẳng đi qua A , tiếp xúc với (O) tại D sao cho O,D nằm trên cùng một nửa mặt phẳng bờ BC . gọi I là trung điểm BC
a, chứng minh : tứ giác ADOI cùng nằm trên một đường tròn
b, chứng minh : AB.AC =AD^2
mọi người giúp e bài này với câu a đặt tâm ở đâu để vẽ được đường tròn có bốn điểm A ,D ,O ,I nằm trên ạ!