cho đường tròn (o) và dây ab.vẽ tiếp tuyến ax. từ o vẽ tia oh vuông góc với ab tại h và cắt x tại m.
a)c/m mb là tiếp tuyến của đtròn (o).
b) vẽ đường kính bd, md cắt đtròn ở e.c/m mb^2=md.me.
c) qua h vẽ đường song song ma cắt mb tại f. c/m fe là tiếp tuyến của đtròn (o)
Cho đường tròn (O) đường kính AB.Trên tia tiếp tuyến của (O) tại A, lấy điểm M khác A. Đường thẳng MB cắt đường tròn (O) tại C. Qua A kẻ đường thẳng vuông góc với OM tại I, đường thẳng này cắt đường tròn (O) tại D.
a) Chứng minh MD là tiếp tuyến của (O)
b) Chứng minh ∆MAC vuông tại C .
c) Chứng minh rằng góc MCD = góc MDB
d) Tiếp tuyến với đường tròn ngoại tiếp ∆AMD tại điểm A cắt (O) ở P. E là điểm
đối xứng với A qua D. Chứng minh rằng bốn điểm A, M, E, P cùng thuộc một
đường tròn.
Mình đang cần gấp ạ , thks mn
cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
Từ điểm M bên ngoài đường tròn (O) vẽ tiếp tuyến MA,MB(A,B là các tiếp điểm),MO cắt AB tại H.Kẻ đường kính AC
a.Chứng minh:MO // BC
b.MC cắt đường tròn tại D.Chứng minh MH.MO = MC.MD
c.Đường thẳng kẻ qua O vuông góc với BC cắt MB tại N.Chứng minh NC là tiếp tuyến của đường tròn (O)
d.MO cắt đường tròn tại I.Chứng minh I là tâm đường tròn nội tiếp tam giác MAB
Câu 3: Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa
đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.
b) Chứng minh .
c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH.
CHo nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.TỪ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm).AC cắt OM tại E;MB cắt nửa (O) tại D (D khác B)
a/AMCO và AMDE là các tứ giác nội tiếp
b/MNCD là tứ giác nội tiếp
Cho đường tròn \(\left(O\right)\) và điểm A nằm ngoài đường tròn với \(OA>2R\).Từ A vẽ hai tiếp diễn \(AB,AC\) của đường tròn \(\left(O\right)\) (B,C là tiếp điểm).Vẽ dây BE của đường tròn (O) song song với AC;AE cắt đường tròn tại D (D khác E );BD cắt AC tại S.Gọi M là trung điểm của đoạn thẳng DE .
a) Chứng minh năm điêm A,B,C,O,M cùng thuộc một đường tròn
b) Chứng minh SC2=SB.SD và SA=SC
c)Hai đường thẳng DE và BC cắt nhau tại V ; đường thẳng SV cắt BE tại H .Chứng minh ba điểm H,C,O thẳng hàng .
Cho tam giác ABC vuông tại C (CA > CB) và nội tiếp đường tròn (O). Gọi I
là hình chiếu của O trên AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O) ở M.
a) Chứng minh rằng MC là tiếp tuyến của đường tròn tâm (O).
b) Đường thẳng MB cắt đường tròn (O) tại N khác B. Chứng minh rằng tứ giác NIOB nội tiếp.
c) Lấy điểm P sao cho N là trung điểm AP. Gọi H là hình chiếu của P trên đường thẳng AM.
Chứng minh rằng đường thẳng BC đi qua trung điểm đoạn PH.
Mình đang gấp nên các bn giúp mình nhanh với
1. Cho đường tròn (O;R) (điểm O cố định, giá trị R không đổi) và điểm M nằm bên ngoài (O). Kẻ 2 tiếp tuyến MB, MC (B, C là các tiếp điểm) của (O) và tia Mx nằm giữa 2 tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ 2 là A. Vẽ đường kính BB' của (O). Qua O kẻ đường thẳng vuông góc với BB', đường thẳng này cắt MC và B'C lần lượt tại K và E. Chứng minh rằng:
a) 4 điểm M, B, O, C cùng nằm trên 1 đường tròn.
b) Đoạn thẳng ME = R.
2. Cho △ABC có 3 góc nhọn nội tiếp đường tròn tâm O (AB < AC). 2 tiếp tuyến tại B và C cắt nhau tại M. AM cắt đường tròn (O) tại điểm thứ 2 D. E là trung điểm đoạn AD. EC cắt đường tròn (O) tại điểm thứ 2 F. Chứng minh rằng:
a) Tứ giác OEBM nội tiếp.
b) MB2 = MA.MD.
c) Góc BFC = Góc MOC.
d) BF // AM.