Cho 2 đường tròn (O1), (O2) cắt nhau tại A và B. Tiếp tuyến của (O2) tại A cắt (O1) tại C và tiếp tuyến tại B của (O1) cắt (O2) tại D. Chứng minh:
a) AD song song với BC.
b) AB2 = AD . BC
c) \(\dfrac{BD^2}{AC^2}=\dfrac{AD}{BC}\)
Cho hai đường tròn O1 và O2 cắt nhau tại 2 điểm A và B. Trêb tia đối tia BA lấy M, từ M kẻ 2 tiếp tuyến ME và MF với đường tròn O1 ( F nằm phía O2 với bờ là đường thẳng AB) . BE và BF cắt đường tròn O2 tại N và Q. Gọi I là giao điểm của NQ và EF. CMR:
a, t/g AFIQ nội tiếp
b, EA.EF=EB.FA
c, IN=IQ
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau
2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA
3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.
4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!
Cho 2 đường tròn \(\left(O_1\right)\) và \(\left(O_2\right)\)cắt nhau tại A và B, tiếp tuyến chung với 2 đường tròn \(\left(O_1\right)\)và \(\left(O_2\right)\)về phía nửa mặt phẳng bờ \(O_1;O_2\) chưa điểm B, có tiếp điểm thứ tự là E , F. Qua A kẻ cát tuyến song song với EF và cắt \(\left(O_1\right),\left(O_2\right)\)theo thứ tự tại C và D. Đường thẳng CE và đường thẳng DF cắt nhau tại I .
CMR :
a ) IA vuông góc với CD
b) Tứ giác IEBF nội tiếp
c) Đường thẳng AB đi qua trung điểm của EF
cho hai đường tròn tâm O1 và O2 tiếp xúc ngoài tại E. Vẽ hai tiếp tuyến chung ngoài AB và CD với A và D là hai tiếp điểm thuộc (O1); B và C là hai tiếp điểm thuộc (O2). Chứng minh:
a, Tứ giác ABCD là hình thang cân (gợi ý CD và BA kéo dài cắt nhau ở F)
b, BC+AD=AB+CD (gợi ý : về tiếp tuyến chung trong tại E cắt AB và CD ở M và N
(trình bày cụ thể ra cho mình nhé)
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của đường tròn (O') cắt đường tròn (O) tại điểm thứ hai P. Tia PB cắt đường tròn (O') tại Q. Chứng minh đường thẳng AQ song song với tiếp tuyến tại P của đường tròn (O).
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của đường tròn (O') cắt đường tròn (O) tại điểm thứ hai P. Tia PB cắt đường tròn (O') tại Q. Chứng minh đường thẳng AQ song song với tiếp tuyến tại P của đường tròn (O).
Từ một điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB với đường tròn (A,B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB và cắt đường tròn tại C ;đoạn thẳng MC cắt đường tròn tại D. Hai đường thẳng AD và MB cắt nhau tại E.
a) CMR: tứ giác MAOB nội tiếp
b) CMR: ∆MED ~ ∆AEM. Từ đó suy ra ME²=ED.AE
c) chứng minh E là trung điểm của đoạn MB
Cho đường tròn (O; R) đường kính AB, điểm M nằm trên đoạn OB ( M khác O và B), từ M kẻ đường thẳng vuông góc với AB cắt (O) tại hai điểm C và E. Gọi F là hình chiếu củ C trên AE và I là hình chiếu của M lên CF. Đường thẳng AI cắt (O) tại điểm thứ hai là H.
a, Tiếp tuyến tại C của (O) cắt đường thẳng AB tại D. Gọi (O1) là đường tròn ngoại tiếp tam giác CHD. Chứng minh BD là tiếp tuyến (O1).
b, Gọi O2 là tâm đường tròn ngoại tiếp tam giác MHD. Biết OM= (R√2)/2, tính diện tích tam giác OO1O2 theo R.
Cho đường tròn (O; R) đường kính AB, điểm M nằm trên đoạn OB ( M khác O và B), từ M kẻ đường thẳng vuông góc với AB cắt (O) tại hai điểm C và E. Gọi F là hình chiếu củ C trên AE và I là hình chiếu của M lên CF. Đường thẳng AI cắt (O) tại điểm thứ hai là H.
a, Tiếp tuyến tại C của (O) cắt đường thẳng AB tại D. Gọi (O1) là đường tròn ngoại tiếp tam giác CHD. Chứng minh BD là tiếp tuyến (O1).
b, Gọi O2 là tâm đường tròn ngoại tiếp tam giác MHD. Biết OM= (R√2)/2, tính diện tích tam giác OO1O2 theo R.