Cho 2 đường tròn (O1; R1); (O2; R2) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài tại BC (B thuộc O1, C thuộc O2). Tiếp tuyến chung tại A cắt BC ở I.
a) CM tam giác ABC, tam giác IO1O2 vuông và BC = 2\(\sqrt{R1R2}\)
b) Gọi R là bán kính đường tròn O tiếp xúc với BC và tiếp xúc ngoài 2 đường tròn O1, O2. CM \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}\)
Cho tam giác ABC vuông cân ở A trên cạnh BC lấy điểm M.Gọi (O1) là đường tròn tâm O1 qua M và tiếp xúc với AB tại B gọi (O2) là đường tròn tâm O2 qua M và Tiếp xúc với AC tại C.Đường tròn (O1) và(O2) cắt nhau tại D
1.Chứng minh:tam giác BCD là tam giác vuông
2.C/m O1D là tiếp tuyến của (O2)
cho hai đường tròn tâm O1 và O2 tiếp xúc ngoài tại E. Vẽ hai tiếp tuyến chung ngoài AB và CD với A và D là hai tiếp điểm thuộc (O1); B và C là hai tiếp điểm thuộc (O2). Chứng minh:
a, Tứ giác ABCD là hình thang cân (gợi ý CD và BA kéo dài cắt nhau ở F)
b, BC+AD=AB+CD (gợi ý : về tiếp tuyến chung trong tại E cắt AB và CD ở M và N
(trình bày cụ thể ra cho mình nhé)
Cho 2 đường tròn (O1),(O2) tiếp xúc ngoài tại A và một đường thẳng tiếp xúc (O1),(O2) lần lượt tại B và C.
a) chứng minh tam giác ABC vuông
b) Gọi M là trung điểm BC. Chứng minh AM là tiếp tuyến chung của (O1),(O2)
c) Chứng minh \(O_1M\perp O_2M\)
d) Các tia BA, CA cắt (O2),(O1) lần lượt tại D và E. Chứng minh diện tích tam giác ADE bằng diện tích tam giác ABC
giúp mk giải mấy bài này với
I/ Cho nửa đường tròn đường kính ab trên cùng 1 nửa mặt phẳng vẽ 2 tiếp tuyến Ax By trên nửa đường tròn lấy điểm M vẽ tiếp tuyến tại M cắt Ax tại C và cắt By tại D.Nối AM và OC cắt nhau tại K, MB và OD cắt nhau tại I.
C/m:
a/MKOI là hình chữ nhật
b/KI vuông góc vs AC
c/t/giác OAC đồng dạng vs t/giác DBO
II/ Cho 2 đường tròn(O) và (O') cắt nhau tại A và B.Gọi I là trung điểm của (O) và (O') qua A vẽ đường thẳng vuông góc với IA,cắt các đường tròn (O) và (O') tại C và D (khác A) . C/m:AC=AD
III/ Cho 2 đường tròn (O1) và (O2) tiếp xúc ngoài tại M. Qua M vẽ đường thẳng thứ 2 cắt (O1) ở A2, cắt (O2) ở B2.
C/m:
a/t/giác O1A1M đồng dạng vs t/giác O2B1M
b/t/giác MA1A2 đồng dạng vs t/giác MB1B2
c/A1A2 song2 vs B1B2
Cho hai đường tròn O1 và O2 cắt nhau tại 2 điểm A và B. Trêb tia đối tia BA lấy M, từ M kẻ 2 tiếp tuyến ME và MF với đường tròn O1 ( F nằm phía O2 với bờ là đường thẳng AB) . BE và BF cắt đường tròn O2 tại N và Q. Gọi I là giao điểm của NQ và EF. CMR:
a, t/g AFIQ nội tiếp
b, EA.EF=EB.FA
c, IN=IQ
Cho tam giác ABC nhọn nội tiếp (O). Các tiếp tuyến tại B và C của (O). các tiếp tuyến tại B và C cắt nhau tại S. vẽ AD vuông BC tại D, AE vuông SB tại E, AF vuông SC tại F
a. Cm ADBE nội tiếp và góc ADE bằng góc ACB
b. ED cắt AB tại H, FD cắt AC tại K. CM: tứ giác AHDK nội tiếp
c. AS cắt (O) và BC lần lượt tại I và N (I khác A). CM: AI/BI = AC/CI ;
AB2/AC2 = NB/NC
d. Gọi M là trung điểm dây BC. Gọi (O1), (O2) lần lượt là đường tròn ngoại tiếp tam giác AEH và tam giác AFK. T là giao điểm thứ hai của (O1) và (O2). Cm A, T,M thẳng hàng
Cho H,K là giao điểm của hai đường tròn tâm O1 và O2.Đường thẳng O1H cắt đường tròn O1 tại A và đường tròn tâm O2 tại B.Đường thẳng O2H cắt đường tròn tâm O1 tại C và đường tròn tâm O2 tại D.Chứng minh:
a, Ba đường thẳng AC,BD,HK đồng quy tại một điểm
b, BH.BA=CH.CD
Cho đường tròn (O; R) đường kính AB, điểm M nằm trên đoạn OB ( M khác O và B), từ M kẻ đường thẳng vuông góc với AB cắt (O) tại hai điểm C và E. Gọi F là hình chiếu củ C trên AE và I là hình chiếu của M lên CF. Đường thẳng AI cắt (O) tại điểm thứ hai là H.
a, Tiếp tuyến tại C của (O) cắt đường thẳng AB tại D. Gọi (O1) là đường tròn ngoại tiếp tam giác CHD. Chứng minh BD là tiếp tuyến (O1).
b, Gọi O2 là tâm đường tròn ngoại tiếp tam giác MHD. Biết OM= (R√2)/2, tính diện tích tam giác OO1O2 theo R.