Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B ∈ (O), C ∈ (O'). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng:

Tứ giác AEMF là hình chữ nhật.

Cao Minh Tâm
25 tháng 5 2017 lúc 8:26

Để học tốt Toán 9 | Giải bài tập Toán 9

MA và MB là các tiếp tuyến của (O) (gt).

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

MA = MB

MO là tia phân giác của góc AMB

ΔAMB cân tại M (MA = MB) mà có MO là đường phân giác nên đồng thời là đường cao

=> MO ⊥ AB hay ∠MEA = 90o

Tương tự ta có MO' là tia phân giác của góc AMC và ∠MFA = 90o

MO, MO' là tia phân giác của hai góc kề bù ∠AMB và ∠AMC nên ∠EMF = 90o

=> Tứ giác AEMF là hình chữ nhật (vì có ba góc vuông).


Các câu hỏi tương tự
Faker Viet Nam
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Toan Hoang Quang
Xem chi tiết
Trần Hạ Khánh Duy
Xem chi tiết
Phạm Hoàng Vân Anh
Xem chi tiết
Long
Xem chi tiết
Trần Nam Hải
Xem chi tiết