Đường tròn có đường kính BC có tâm M, bán kính MA.OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
Đường tròn có đường kính BC có tâm M, bán kính MA.OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B ∈ (O), C ∈ (O'). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng:
BC là tiếp tuyến của đường tròn có đường kính OO'
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B thuộc (O), C thuộc(O').Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng :
a/ Tứ giác AEMF là hình chữ nhật
b/ ME*MO=MF*MO'
c/ OO' là tiếp tuyến của đường tròn có đường kính là BC.
d/ BC là tiếp tuyến của đường tròn có đường kính là OO'
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B ∈ (O), C ∈ (O'). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng:
ME.MO = MF.MO'
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B ∈ (O), C ∈ (O'). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng:
Tứ giác AEMF là hình chữ nhật.
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài, B € (O),C€(O'). Tiếp tuyến chung trong tại A cắt BC ở điểm M. Gọi E là giao điểm của OM và AB, F là giao điểm của O'M và AC. Chứng minh rằng
a. Tứ giác AEMF là hình chũ nhật
b.ME.MO = MF.MO'
c. OO' là tiếp tuyến của đường tròn có đường kínhlà BC
d. BC là tiếp tuyến của đường tròn có đường kính là OO'
cho hai đường tròn O và O' tiếp xúc ngoài tại A.Kẻ tiếp tuyến chung ngoài BC , B thuộc (O), C thuộc (O').Tiếp tuyến chung trong tại A cắt BC tại M.Gọi E là giao điểm của OM và AB,F là giao điểm của O'M và AC.Tính diện tích BCOO' theo R và r
Cho hai đường tròn (O; 16cm) và (O’; 9cm) tiếp xúc ngoài tại A. Gọi BC là tiếp tuyến chung ngoài của hai đường tròn (B ∈ (O), C ∈ (O')). Kẻ tiếp tuyến chung tại A cắt BC ở M. Gọi I là trung điểm của OO’. Chứng minh rằng BC là tiếp tuyến của đường tròn tâm I, bán kính IM.
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài DE, D ∈ (O), E ∈ (O’). Kẻ tiếp tuyến chung trong tại A cắt DE ở I. Gọi M là giao điểm của OI và AD, N là giao điểm của O’I và AE. Chứng minh rằng OO’ là tiếp tuyến của đường tròn có đường kính là DE
Cho hai đường tròn (O và (O') tiếp xúc ngoài tại A. Gọi AB là đường kính của (O), AC là đường kính của (O'). DE là tiếp tuyến chung của hai đường tròn, D thuộc (O) và E thuộc (O'), K là giao điểm của BD và CE.
a. Chứng minh AK là tiếp tuyến chung của (O) và (O').
b. Gọi M là trung điểm BC. Chứng minh rằng : MK vuông góc với DE