Đáp án C
Trong không gian a và b có thể cắt nhau và cùng thuộc mặt phẳng song song với mặt phẳng đã cho.
Đáp án C
Trong không gian a và b có thể cắt nhau và cùng thuộc mặt phẳng song song với mặt phẳng đã cho.
Trong không gian, cho các mệnh đề sau:
I. Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau.
II. Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó.
III. Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P).
IV. Qua điểm A không thuộc mặt phẳng ( α ) , kẻ được đúng một đường thẳng song song với .
Số mệnh đề đúng là
A. 2
B. 0
C. 1
D. 3
Cho hai đường thẳng a,b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
A. 0
B. 2
C. Vô số
D. 1
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
A. 0
B. 2
C. Vô số
D. 1
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu cặp mặt phẳng song song với nhau lần lượt chứa a bà b?
A. Vô số
B. Không có cặp mặt phẳng nào
C. 2
D. 1
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu cặp mặt phẳng song song với nhau lần lượt chứa a bà b?
A. Vô số
B. Không có cặp mặt phẳng nào
C. 2
D. 1
Cho các mệnh đề sau:
(1) Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì chúng song song với nhau.
(2) Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì chúng song song với nhau.
(3) Bất kì đường thẳng nào cắt một trong hai mặt phẳng song song thì nó cũng cắt mặt phẳng còn lại.
Số mệnh đề sai là:
A. 1.
B. 2.
C. 3.
D. 0.
Cho bốn mệnh đề sau:
(1) Nếu hai mặt phẳng α v à β song song với nhau thì mọi đường thẳng nằm trong mặt phẳng α đều song song với β .
(2) Hai đường thẳng nằm trên hai mặt phẳng song song thì song song với nhau.
(3) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.
(4) Có thể tìm được hai đường thẳng song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo nhau cho trước
Trong các mệnh đề trên có bao nhiêu mệnh đề sai?
A. 4
B. 2
C. 3
D. 1
Cho bốn mệnh đề sau:
1) Nếu hai mặt phẳng α và β song song với nhau thì mọi đường thẳng nằm trong mặt phẳng α đều song song với β .
2) Hai đường thẳng nằm trên hai mặt phẳng song song thì song song với nhau.
3) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.
4) Có thể tìm được hai đường thẳng song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo nhau cho trước
Trong các mệnh đề trên có bao nhiêu mệnh đề sai?
A. 4
B. 2
C. 3
D. 1
Cho hai đường thẳng a, b song song với nhau. Trên a ta chọn 10 điểm phân biệt, trên b ta chọn 11 điểm phân biệt. Có bao nhiêu hình thang được tạo thành từ 21 điểm đã cho ở trên?
A. 406
B. 2475
C. 2512
D. 304
Cho hai đường thẳng a, b song song với nhau. Trên a ta chọn 10 điểm phân biệt, trên b ta chọn 11 điểm phân biệt. Có bao nhiêu hình thang được tạo thành từ 21 điểm đã cho ở trên.
A. 304
B. 2475
C. 406
D. 2512