a, P(x) + Q(x)=\(x^3-3x+x^2+1\)+\(2x^2-x^3+x-5\)
=\(\left(x^3-x^3\right)+\left(-3x+x\right)\)+\(\left(x^2+2x^2\right)+\left(1-5\right)\)=\(-2x+3x^2-4\)
P(x)-Q(x)=\(x^3-3x+x^2+1\)-\(2x^2+x^3-x+5\)=\(\left(x^3+x^3\right)+\left(-3x-x\right)\)+\(\left(x^2-2x^2\right)+\left(1+5\right)\)
=\(2x^3-4x-x^2+6\)
vậy P(x)+Q(x)=\(-2x+3x^2-4\)
P(x)-Q(x)=\(2x^3-4x-x^2+6\)
a) \(P\left(x\right)=x^3-3x+x^2+1\)
\(=x^3+x^2-3x+1\)
\(Q\left(x\right)=2x^2-x^3+x-5\)
\(-x^3+2x^2+x-5\)
\(P\left(x\right)=x^3+x^2-3x+1\)
+
\(Q\left(x\right)=-x^3+2x^2+x-5\)
___________________________________
\(P\left(x\right)+Q\left(x\right)=\) \(3x^2-2x-4\)
Vậy P(x) + Q(x) = 3x^2 - 2x - 4
\(P\left(x\right)=x^3+x^2-3x+1\)
-
\(Q\left(x\right)=-x^3+2x^2+x-5\)
____________________________________________
\(P\left(x\right)-Q\left(x\right)=\)\(2x^3-1x^2-4x+6\)
Vậy P(x) - Q(x) = 2x^3 - 1x^2 - 4x + 6