Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
c) Chứng tỏ rằng x=-1 là nghiệm của\(P\left(x\right)\) nhưng không phải là nghiệm của Q(x)
Cho 2 đa thức:
\(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5-10+x\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
Chứng tỏ rằng x=1 không phải là nghiệm của đa thức A(x) nhưng là nghiệm của đa thức B(x)
cho đa thức :
P(x) = 1+ 3x^5 - 4x^2 + x^5 + x^3 - x^2 + 3x^3
và Q(x)=2x^5 - x^2 + 4x^5 - x^4 + 4x^2 - 5x
a, thu gọn và sắp xếp các hạng tử của đa thức lũy thừa tăng của biến
b, tính P(x) + Q(x) ; P(x) - Q(x)
c,chứng tỏ rằng x=0 là nghiệm của đa thức Q(x) nhưng ko là nghiệm của đa thức P(x)
1. Cho hai đa thức: F(x) = 7 - x^5 + 5x - 2x^3 + x^2 - 11x^4
G(x) = x^5 - 7 + 2x^2 + 11x^4 + 2x^3 - 4x
Tính: H(x) = F(x) + G(x)
K(x) = F(x) - G(x)
Tìm nghiệm của H(x)
2. Cho hai đa thức:
P(x) = 5x^4 - 2x^2 + x^3 - \(\frac{1}{4}x\)
Q(x) = -4x^3 + x^2 - 1/4 + 3x^4
Tính P(x) + Q(x)
Chứng tỏ rằng x=0 là nghiệm của đa thức P(x) và không phải là nghiệm của Q(x)
cho các đa thức
P[x]= 3x^5 + 5x - 4x^4 - 2x^3 + 6 + 4x^2
Q[x]= 2x^4 -x + 3x^2 - 2x^3 + 1/4 - x^5
a, sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến
b, tính P[x] + Q[x] ; P[x] - Q[x]
c, chứng tỏ rằng x= -1 là nghiệm của P[x] nhưng không phải là nghiệm của Q[x]
cho 2 đa thức P(x)=-2x^2+3x^4+x^3+x^2 - 1/4x Q(x)=3x^4+3x^2 - 1/4 - 4x^3 - 2x^2 a)sắp xếp các hạng tử của mỗi đa thức sau theo luỹ thừa giảm dần của biến b) tính p(x)+Q(x) và P(x) - Q(x) c) chứng tỏ x=0 là nghiệm của đa thức P(x) nhưng không là nghiệm của Q(x)
Cho 2 đa thức:
A(x) = \(x^5-3x^2-x^3-x^4-4x^3-1\frac{3}{4}\)
B(x) = \(-5x^3+2x^4-x^2+x^5\)
a) Sắp xếp đa thức theo luỹ thừa giảm dần
b) Tính C(x) = A(x) - B(x)
c) Chứng tỏ x=0 là nghiệm của B(x) nhưng không là nghiệm của A(x)
d) Chứng tỏ C(x) không có nghiệm
Cho 2 đa thức F(x) = 5x^5 +3x - 4x^4 -2x^3 +6+4x^2 Q(x) = 2x^4 -x +3x^2 +1/4-x^5
a, Sắp sếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b, Tính P(x) - Q(x)
c, Chứng tỏ x = -1 là nghiệm của P(x) nhưng ko phải là nghiệm của Q(x)
Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a}
\)