1: Thay x=2 vào P, ta được:
\(P=\dfrac{2^2+2}{3\left(2+3\right)}=\dfrac{6}{3\cdot5}=\dfrac{2}{5}\)
2: \(Q=\dfrac{1}{x-1}+\dfrac{1}{x+1}-\dfrac{3-x}{x^2-1}\)
\(=\dfrac{1}{x-1}+\dfrac{1}{x+1}+\dfrac{x-3}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+1+x-1+x-3}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)
3: Đặt A=P*Q
\(=\dfrac{3}{x+1}\cdot\dfrac{x\left(x+1\right)}{3\left(x+3\right)}=\dfrac{x}{x+3}\)
Để \(A=-\dfrac{3}{7}\) thì \(\dfrac{x}{x+3}=-\dfrac{3}{7}\)
=>7x=-3(x+3)
=>7x=-3x-9
=>10x=-9
=>\(x=-\dfrac{9}{10}\left(nhận\right)\)
4: Để \(A=P\cdot Q=\dfrac{x}{x+3}\) nguyên thì \(x⋮x+3\)
=>\(x+3-3⋮x+3\)
=>\(-3⋮x+3\)
=>\(x+3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-2;-4;0;-6\right\}\)