Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho góc vuông xOy, điểm A thuộc tia Ox, điểm B thuộc tia Oy. Gọi D, E theo thứ tự là trung điểm của OA, OB. Đường vuông góc với OA tại D và đường vuông góc với OB tại E cắt nhau ở C. Chứng minh rằng: CE = OD

Cao Minh Tâm
24 tháng 2 2017 lúc 7:53

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Vì CE // OD (cùng vuông góc với OB) ⇒ ∠C1 = ∠O1 (so le trong)

+) Xét ΔOCE và ΔCOD có:

OC chung

∠C1 = ∠O1 ( chứng minh trên )

∠OEC = ∠ODC = 90º

Suy ra: ΔOCE = ΔCOD (cạnh huyền – góc nhọn) ⇒ CE = OD.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Khánh Huyền
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Dương Gia Huệ
Xem chi tiết
Vương Tuấn Khải
Xem chi tiết
Nguyễn Bích Ngọc
Xem chi tiết