Vì điểm C đối xứng với điểm A qua điểm B nên BA = BC
Kẻ CH ⊥ Ox
Xét hai tam giác vuông AOB và CHB, ta có:
∠ (AOB) = ∠ (CHB ) = 90 0
BA = BC ( chứng minh trên)
∠ (ABO ) = ∠ (CBH) ( đối đỉnh)
Suy ra ∆ AOB = ∆ CHB ( cạnh huyền, góc nhọn)
⇒ CH = AO
Vì A, O cố định nên OA không đổi suy ra CH không đổi
Vì C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng bằng OA.
Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.
Vậy C chuyển động trên tia Kz // Ox, cách Ox một khoảng không đổi bằng OA.