a: Xét ΔOCB và ΔOAD có
OC=OA
góc O chung
OB=OD
=>ΔOCB=ΔOAD
=>BC=AD
b: Xét ΔIAB và ΔICD có
góc IBA=góc IDC
AB=CD
góc IAB=góc ICD
=>ΔIAB=ΔICD
=>IA=IC và IB=ID
=>ΔIAC cân tại I và ΔIBD cân tại I
a: Xét ΔOCB và ΔOAD có
OC=OA
góc O chung
OB=OD
=>ΔOCB=ΔOAD
=>BC=AD
b: Xét ΔIAB và ΔICD có
góc IBA=góc IDC
AB=CD
góc IAB=góc ICD
=>ΔIAB=ΔICD
=>IA=IC và IB=ID
=>ΔIAC cân tại I và ΔIBD cân tại I
Cho góc nhọn xOy. trên tia Ox lấy 2 điểm A,B và trên tia Oy lấy 2 điểm C,D - sao cho OA=OC và OB=OD. Gọi I là giao điểm AD và CB.
a) Chứng minh BC=AD.
b) Chứng minh tam giác IAC cân và tam giác IDB cân.
c) Chứng minh OI là tia phân giác của BAC.
Cho góc xOy khác góc bẹt. Trên tia Ox lấy hai điểm A và B, trên tia Oy lấy hai điểm C và D sao cho OA = OC, OB = OD. Gọi I là giao điểm của hai đoạn thẳng AD và BC. Chứng minh rằng:
BC = AD;
Cho góc nhọn xOy. Trên tia Ox lấy điểm A và điểm C, trên tia Oy lấy điểm B và D sao cho OA= OB, OC= OD.
a) Chứng minh AD= BC
b) Gọi E là giao điểm của AD và BC. Chứng minh ΔAEC= ΔBED.
Cho góc xoy khác góc bẹt. Trên tia Ox lấy điểm A và B, trên tia Oy lấy điểm C và D sao cho OA=OC,OB=OD. Chứng minh rằng: a) AD=CB, b) tam giác ABD = tam giác CDB c) Gọi E là giao điểm của AD và BC . Chứng minh EA=EC, d) Chứng minh OE là tia phân giác của góc xoy
Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B, trên tia Oy lấy 2 điểm C và D sao cho OA=OC; OB=OD
a)Chứng minh ∆OAD=∆OCB
b)Gọi I là giao điểm của AD và BC chứng minh ∆OIB=∆OID
c)Chứng minh ∆IAB=∆ICD
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B, D sao cho OA = OB, OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh OE là tia phân giác của góc xOy
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho
OA = OB. Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD với BC. Chứng minh: OE là tia phân giác của góc xOy.
Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng
AD = BC