a) Vì \(\widehat{xOy}\) bẹt có Ot là tia phân giác
⇒ Ot ⊥ xy ⇒ \(\widehat{COA}=\widehat{DOB}=90^0\)
Ta có: △ AOC = ΔDOB ( c − g − c )
⇒ DB = AC ( 2 cạnh tương ứng )
Gọi E là giao điểm của AC và BD.
Có \(\widehat{EAB}+\widehat{EBA}=\widehat{OCA}+\widehat{OAC}=90^0\) vuông tại E
⇒ AC ⊥ BD