Ta có: GD+DK=GK
IB+HB=IH
mà GK=IH
và DK=HB
nên GD=IB
Ta có: GA+AH=GH
CI+KC=KI
mà GH=KI
và GA=CI
nên AH=KC
Xét ΔAGD và ΔCIB có
AG=CI
\(\widehat{G}=\widehat{I}\)
GD=IB
Do đó: ΔAGD=ΔCIB
Suy ra: AD=CB
Xét ΔAHB và ΔCKD có
AH=CK
\(\widehat{H}=\widehat{K}\)
HB=KD
Do đó: ΔAHB=ΔCKD
Suy ra: AB=CD
Xét tứ giác ABCD có
AB=CD
AD=CB
Do đó: ABCD là hình bình hành
