\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)
\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)
Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)
\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)
Ta có: \(F\left(x\right)+F\left(1-x\right)\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)
...
\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)
Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)
\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)
\(=1+1+...+F\left(\frac{1}{2}\right)\)
\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)
\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)
\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)
\(=1005+\frac{1}{2}=\frac{2011}{2}\)
\(f\left(1-x\right)=\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}=\frac{1-3x+3x^2-x^3}{3x^2-3x+1}\)
\(\Rightarrow f\left(x\right)+f\left(1-x\right)=\frac{x^3}{3x^2-3x+1}+\frac{1-3x+3x^2-x^3}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Do đó:
\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)+...+f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)+f\left(\frac{1}{2}\right)\)
\(=f\left(\frac{1}{2012}\right)+f\left(1-\frac{1}{2012}\right)+...+f\left(\frac{1005}{2012}\right)+f\left(1-\frac{1005}{2012}\right)+f\left(\frac{1}{2}\right)\)
\(=1+1+...+1+f\left(\frac{1}{2}\right)\)
\(=1005+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\left(\frac{1}{2}\right)+3.\left(\frac{1}{2}\right)^2}=...\)