Ta thấy: \(f\left(x\right)=\frac{x^3}{1-3x+x^2}\)
\(f\left(1-x\right)=\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+\left(1-x\right)^2}\)\(=\frac{\left(1-x\right)^3}{x^2-3x+1}\)
\(f\left(x\right)+f\left(1-x\right)=\frac{x^3+\left(1-x\right)^3}{x^2-3x+1}\)=1
Do đó: \(f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)=1\)
\(f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)=1\)
....
\(f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)=1\)
=>A=1+1+1+...+1+\(f\left(\frac{1006}{2012}\right)\)=\(\frac{2009}{2}\)
(1005 số 1)