Cho hàm số y=f(x) liên tục trên R thỏa mãn f(2)=16 và ∫ 0 1 f ( 2 x ) d x = 2 Tích phân I = ∫ 0 2 x f ' ( x ) d x bằng
A. I=30
B. I=28
C. I=36
D. I=16
Cho hàm số f(x) liên tục trên R thoả mãn f(0)=0 và | f ( x ) - f ( y ) | ≤ | sin x - sin y | với mọi x , y ∈ R . Giá trị lớn nhất của tích phân ∫ 0 π 2 ( ( f ( x ) ) 2 - f ( x ) ) d x bằng
A. π 4 +1
B. π 8
C. 3 π 8
D. 1- π 4
Cho hàm số f (x) nhận giá trị dương, có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) thỏa mãn 2 f ' ( x ) ( f ( x ) ) 2 = f ( x ) ( x + 2 ) x 3 , ∀ x > 0 và f ( 1 ) = 1 3 . Tích phân ∫ 1 2 1 ( f ( x ) ) 2 d x bằng
A. 11 2 +ln2
B. - 1 2 +ln2
C. 3 2 +ln2
D. 7 2 +ln2
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn [ f ' ( x ) ] 2 + f ( x ) f '' ( x ) ≥ 1 , ∀ x ∈ [ 0 ; 1 ] và f 2 ( 0 ) + f ( 0 ) . f ' ( 0 ) = 3 2 . Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 ( x ) d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2
Cho hàm số f(x) liên tục trên R thỏa mãn f 2 = 16 , ∫ 0 1 f 2 x d x = 2 . Tích phân ∫ 0 2 x f ' x d x bằng
A. 16
B. 28
C. 36
D. 30
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f(x) và g(x) liên tục, có đạo hàm trên R và thỏa mãn f ' 0 . f ' 2 ≠ 0 và g x f ' x = x x - 2 e x . Tìm giá trị của tích phân I = ∫ 0 2 f x g ' x d x
A. -4
B. e - 2
C. 4
D. 2 - e
Cho f(x) liên tục trên ℝ và f 2 = 16 , ∫ 0 1 f 2 x d x = 2. Tích phân ∫ 0 2 x f ' x d x bằng
A. 28
B. 30
C. 16
D. 36
Cho f( x) liên tục trên ℝ và f 2 = 16 , ∫ 0 1 f 2 x d x = 2. Tích phân ∫ 0 2 x . f ' x d x bằng?
A. 28
B. 30
C. 16
D. 36