Theo t/c dãy tỉ số = nhau:
\(\frac{9}{y}=\frac{x}{-2}=\frac{2x}{-4}=\frac{3-2z}{5}=\frac{2x-3+2z}{-4-5}=\frac{2.\left(x+z\right)-3}{-9}=\frac{0-3}{-9}=\frac{-3}{-9}=\frac{1}{3}\)
=> \(\frac{9}{y}=\frac{1}{3}\Rightarrow y=9.3=27\).
Theo t/c dãy tỉ số = nhau:
\(\frac{9}{y}=\frac{x}{-2}=\frac{2x}{-4}=\frac{3-2z}{5}=\frac{2x-3+2z}{-4-5}=\frac{2.\left(x+z\right)-3}{-9}=\frac{0-3}{-9}=\frac{-3}{-9}=\frac{1}{3}\)
=> \(\frac{9}{y}=\frac{1}{3}\Rightarrow y=9.3=27\).
cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\) và x+z=0 tìm y
Cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\)v
và x + z = 0. vậy y = .........
Cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5};x+z=0.\)Khi đó y=?
cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5};x+z=0\)
khi dod y =.....?
Cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\) và \(x+z=0\). Khi đó y =______
Tìm x,y,z
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\) và x + z = y
\(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\) va x+z = 0 khi do y , x =..............
\(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}vàx+z=0\). Khi đó y=_______
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)