vi bz-cy/a=cx-az/b=ay-bx/c=>a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=>abz-acy/a^2=bcx-abz/b^2=cay-cbx/c^2=>abz-acy+bcx-abz+cay-cbx/a^2+b^2+c^2
=>o/a^2+b^2+c^2=0
=>bz-cy=0=>y/b=z/c(1)
cx-az=o=>x/a=z/c(2)
từ (1) và (2) =>x/a=y/b=z/c
vi bz-cy/a=cx-az/b=ay-bx/c=>a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=>abz-acy/a^2=bcx-abz/b^2=cay-cbx/c^2=>abz-acy+bcx-abz+cay-cbx/a^2+b^2+c^2
=>o/a^2+b^2+c^2=0
=>bz-cy=0=>y/b=z/c(1)
cx-az=o=>x/a=z/c(2)
từ (1) và (2) =>x/a=y/b=z/c
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). Chứng minh rằng \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Cho dãy tỉ số \(\frac{bz-cy}{a}=\frac{cx-az}{z}=\frac{ay-bx}{c}\). Chứng minh rằng :\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
biết rằng:\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\).hãy chứng minh :\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) chứng minh rằng: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(Cho:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Biết rằng\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Chứng minh x/y/z=a/b/c
Cho\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\).Chứng minh rằng: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). Chứng minh: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) với a,b,c khác 0
Chứng minh rằng \(\frac{x}{3}=\frac{y}{b}=\frac{z}{c}\)