Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
Ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)
\(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)
=>\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\)
=>\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a.b}{c.d}\)