1. Tìm các số a,b,c không âm thỏa mãn a+3c=8;a+2b=9 và tổng a+b+c có giá trị lớn nhất
2. Cho 3 số x,y,z khác 0 và x+y+z \(\ne\)0 thỏa mãn điều kiện:
\(\frac{\left(y+z-2x\right)}{x}=\frac{\left(z+x-2y\right)}{y}=\frac{\left(x+y-2z\right)}{z}\). Hãy chứng tỏ A = \(\left[1+\frac{x}{y}\right].\left[1+\frac{y}{z}\right].\left[1+\frac{z}{x}\right]\)là một số tự nhiên
Nhanh nha! Cảm ơn
Bài 1: Kí hiệu [x] là số nguyên lớn nhất không vượt qua x, gọi là phần nguyên của x.
a) Tính: \(\left[-\frac{1}{7}\right]\); [3,7]; [-4]; \(\left[-\frac{43}{10}\right]\)
b) Cho x= 3,7. So sánh:
A= [x]+\(\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)và B=[5x]
c) Tính: \(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
d) Cho x thuộc Q. So sánh x và [x]
Bài 2: Cho b khác 0, d khác 0, a khác b.
Tìm \(\frac{c}{d}\)sao cho \(\frac{a}{b}+\frac{c}{d}=\frac{a}{b}-\frac{c}{d}\)
Câu 1: \(A=2015^{n+2}-2014^{n+6}+2015^{n+4}+2014^{n+8}\)(n là một số tự nhiên). Chứng minh rằng A chia hết cho 10
Câu 2: a)Cho biểu thức \(B=\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\).Tính giá trị của B biết x=\(\frac{1}{2}\) và y là số nguyên âm lớn nhất.
b)Tính giá trị biểu thức \(c=\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right)\frac{1-3-5-7-...-49}{89}\)
Câu 3:a/Tìm giá trị nhỏ nhất của \(M=\left|19-x\right|+\left|x-2\right|\) khi x thay đổi
b/ Tìm giá trị nhỏ nhất của x biết \(\left(x-2015\right)^{x+9}-\left(x-2015\right)^{x+2}=0\)
Câu 4: Cho a;b;c;d là các số khác 0 và \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tìm giá trị biểu thức:\(N=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Chứng minh rằng : Nếu a(y+z)=b(z+x)=c(x+y)
Trong 3 số a;b;c là các số khác nhau và khác 0 thì:\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Câu 1: Tìm giá trị lớn nhất của biểu thức sau: \(P=\frac{4}{\left(x-3\right)^2+\left|y+7\right|+\frac{2}{3}}\)
Câu 2: Tìm giá trị nhỏ nhất của biểu thức \(P=\left|x-2012\right|+\left|x-2013\right|\)với x là số tự nhiên.
Câu 3: a) Với x, y là các số nguyên dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\).
b) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}>=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1,TÌm GTNN của P biết P=\(\frac{12}{x^2+\left|y-13\right|+14}\)
2,Tìm số nguyên n để P=\(\frac{n+2}{n-5}\)có giá trị lớn nhất
3,Cho n là số tự nhiên có 2 chữ số.Tìm n biết n+4 và 2n đều là số chính phương
4,cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)
Tính B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)\)
5, So sánh \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
6,Tìm GTLN của S=\(\frac{x^2+2016}{x^2+2015}\)
GIẢI DÙM MK VS MK ĐANG CẦN GẤP
MƠN MN TRƯỚC
Cho các đơn thức:\(A=\frac{-1}{2}x^2y.\left(1\frac{1}{2}\right)xy\);\(B=\left(-xy\right)^2y\);\(C=\left(\frac{-1}{2}y\right)^3x^2\);\(D=\left(-x^2y^2\right).\left(\frac{-2}{3}x^3y\right)\)
a)Trong các đơn thức trên đơn thức nào đồng dạng.
b)Xạc định dấu của x và y biết các đơn thức A;C;D có cùng giá trị dương.
c)Chứng minh rằng trong ba đơn thức A;B;D có ít nhất một đơn thức âm với mọi x,y khác 0.
d)Tính giá trị của D tại \(x=-1;y=\frac{-4}{25}.\)
a) Tìm số tự nhiên x,y biết \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=2004\)
b) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với \(a,b,c\ne0;b\ne c\) ) chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
c) Tìm giá trị nguyên của x để biểu thức \(M=\frac{2016x-2016}{3x+2}\) có giá trị nhỏ nhất
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)