Cho abc khác 1; -1 và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\)
Chứng minh rằng: a=b=c
1,Với các số dương a,b,c. Chứng minh rằng: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
2, Với các số a,b,c>0. Chứng minh rằng:\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Cho \(a;b;c>0\). Chứng minh rằng:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a, b, c là các số dương và a+b+c=1 chứng minh rằng: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng
\(\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)
Cho 3 phân thức \(\frac{a-b}{1+ab};\frac{b-c}{1+bc};\frac{c-a}{1+ca}\)chứng minh rằng tổng ba phân hức bằng tích của chúng
cho 3 số dương thỏa mãn a+b+c=3. Chứng minh rằng \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
Cho a,b và c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho a,b,c là các số thực thỏa mãn \(^{a^2+b^2+c^2=1}\). Chứng minh rằng : \(\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\le\frac{3}{4}\)