Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
=> (2a + b)(c - 2d) = (a - 2b)(2c + d)
=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc - 2bd
=> -4ad + bc = ad - 4bc
=> -4ad - ad = -4bc - bc
=> -5ad = - 5bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
Theo bài ra ta có :
\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)
\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)
\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)
\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
<=> ( 2a + b )( c - 2d ) = ( a - 2b )( 2c + d )
<=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc - 2bd
<=> 2ac - 4ad + bc - 2bd - 2ac - ad + 4bc + 2bd = 0
<=> -5ad + 5bc = 0
<=> -5ad = -5bc
<=> ad = bc ( chia cả hai vế cho -5 )
<=> a/b = c/d ( đpcm )
\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
\(\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(a-2b\right)\left(2c+d\right)\)
\(\Leftrightarrow2ac-4ad+bc-2bd=2ac+ad-4bc-2bd\)
\(\Leftrightarrow2ac-4ad+bc-2bd-2ac-ad+4bc+2bd=0\)
\(\Leftrightarrow-5ad+5bc=0\)
\(\Leftrightarrow-5ad=-5bc\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)( đpcm )