cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh
\(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh
\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Cho: \(\frac{2a+3b}{2a-3b}\)= \(\frac{2c+3d}{2c-3d}\)
Chứng Minh Rằng:\(\frac{a}{b}=\frac{c}{d}\)
Chứng minh:\(\frac{5a+3b}{5c+3d}=\frac{2a-3b}{2c-3d}\) Cho a/b=c/d.
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh: a) \(\frac{2a+b}{b}\)=\(\frac{2c+d}{d}\)
b) \(\frac{2a-3b}{2a+3b}\)=\(\frac{2c-3d}{2c+3d}\)
Cho tỉ lệ thức \(\frac{a}{c}=\frac{c}{b}\) chứng minh rằng:
a)\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
b)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
a, \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, \(\frac{a^2.b^2}{c^2.d^2}=\frac{a^4+b^4-2a^2b^2}{c^4+d^4-2c^2d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\), chứng minh:
\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)