I think that we have to prove \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)
We have \(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
We have \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=0\)( Because \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\))
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)
So...