Cho \(f\left(x\right)=5x-1\)
a) Tính \(f\left(1\right);f\left(-2\right);f\left(\sqrt{2}\right)\)
b) So sánh \(f\left(1+\sqrt{2}\right)\) và \(f\left(1-\sqrt{2}\right)\)
c) Chứng minh hàm số đồng biến trên R
d) Tìm x để f(x)=4
Cho \(f\left(x\right)=5x-1\)
a) Tính f(1); f(-2); \(f\left(\sqrt{2}\right)\)
b) So sánh \(f\left(1+\sqrt{2}\right)\) và \(f\left(1-\sqrt{2}\right)\)
c) Chứng minh hàm số đồng biến trên R.
d) Tìm x để f(x) =4
cho hàm số y=f(x)=\(\left(\sqrt{2}+1\right)x+\sqrt{3}-2\)
so sánh\(f\left(\sqrt{2}+1\right)\)và \(f\left(\sqrt{2}-1\right)\)
Cho hàm số bậc nhất \(y=f\left(x\right)=\left(1-\sqrt{5}\right)x+\sqrt{2}\)
Không tính hãy so sánh \(f\left(1\right)\) và \(f\left(\sqrt{5}\right)\)
Cho hàm số \(y=f\left(x\right)=\left(2m^2-5m+7\right)x-\sqrt{2017}.\)
So sánh \(f\left(1-\sqrt{2015}\right)\)và \(f\left(1-\sqrt{2017}\right)\)
Cho hàm số \(y=f\left(x\right)=\left(2m^2-5m+7\right)x-\sqrt{2017}\)
Hãy so sánh \(f\left(1-\sqrt{2015}\right)\)và \(f\left(1-\sqrt{2017}\right)\)
cho hàm số bậc nhất y=F(x)=\(\left(\sqrt{3}-1\right)\) X+1
a) hàm số trên là đồng biến hay nghịch biến trên R
b)tính các giá trị F(0);F\(\left(\sqrt{3}+1\right)\)
giải pt sau bằng các định lý : \(f\left(x\right)=g\left(x\right)\Leftrightarrow\left[f\left(x\right)\right]^{2k+1}=\left[g\left(x\right)\right]^{2k+1}\)
\(\sqrt[2k+1]{f\left(x\right)}=g\left(x\right)\Leftrightarrow f\left(x\right)=\left[g\left(x\right)\right]^{2k+1}\)
\(\sqrt[2k+1]{f\left(x\right)}=\sqrt[2k+1]{g\left(x\right)}\Leftrightarrow f\left(x\right)=g\left(x\right)\)
\(\sqrt[2k]{f\left(x\right)}=g\left(x\right)\Leftrightarrow\orbr{\begin{cases}g\left(x\right)>0\\f\left(x\right)=\left[g\left(x\right)\right]^{2k}\end{cases}}\)
\(\sqrt[2k]{f\left(x\right)}=\sqrt[2k]{g\left(x\right)}\Leftrightarrow\hept{\begin{cases}f\left(x\right)\ge0\\g\left(x\right)\ge0\\f\left(x\right)=g\left(x\right)\end{cases}}\)hoặc
a) \(\sqrt{x+1}+\sqrt{4x+13}=\sqrt{3x+12}\)
b)\(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
c) \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\)cho hàm \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm điều kiện xác định của hàm
b) Tính \(f=\left(4-2\sqrt{3}\right)\)
và \(f\left(a^2\right)\)
c) Tìm x nguyên để f(x) là số nguyên
d) Tìm x sao cho f(x)=f(2x)