a)
M = ( 1 + \(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\))(1 - \(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\))
= (\(\dfrac{\sqrt{a}+1}{\sqrt{a}+1}\)+ \(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\))(\(\dfrac{\sqrt{a}-1}{\sqrt{a}-1}\)- \(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\))
= \(\dfrac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\) ✖\(\dfrac{\sqrt{a}-1-a+\sqrt{a}}{\sqrt{a}-1}\)
= \(\dfrac{a+2\sqrt{a}+1}{\sqrt{a}+1}\)✖\(\dfrac{-\left(a-2\sqrt{a}+1\right)}{\sqrt{a}-1}\)
= \(\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}\)✖\(\dfrac{-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)}\) = (\(\sqrt{a}+1\)) ✖ -(\(\sqrt{a}-1\)) = - (\(\sqrt{a}+1\)) ✖ (\(\sqrt{a}-1\)) = -(a-1) = 1-a
b)
M = 0 ↔ 1 -a = 0 ↔a = 1
Vậy với a = 1 thì M = 0