Cho đường tròn (O;R) đường kính AB.M trên đường tròn (O). điểm D trên đoạn thẳng AM.BD cắt đường tròn (O) tại K( khác B).AK cắt BM tại C. CD cắt AB tại Q VẼ HÌNH THÔI ạ
Cho đường tròn (O;R) đường kính AB.M trên đường tròn (O). điểm D trên đoạn thẳng AM.BD cắt đường tròn (O) tại K( khác B).AK cắt BM tại C. CD cắt AB tại Q cmr:
1)CD⊥AB
2) \(AK^2+AM^2+BK^2+BM^2=8R^2\)
3) a) 4 điểm K,C,M,D cùng thuộc 1 đường tròn b) 4 điểm A,K,D,Q cùng thuộc 1đường tròn c)4 điểm B,Q,M,D cùng thuộc 1 đường tròn d) 4 điểm Q,C,M,A cùng thuộc 1 đường tròn ( TRÌNH BÀY + VẼ HÌNH )
Cho nữa đường tròn (O;R) đường kính AB. Một điểm M cố định thuộc đoạn thẳng OB (M khác B và M khác O). Đường thẳng d vuông góc với AB tại M cắt nữa đường tròn đã cho tại N. Trên cúng NB lấy điểm E bất kì ( E khác B và E khác N). Tia BE cắt đường thẳng d tại C, đường thẳng AC cắt nữa đường tròn tại D. Gọi giao điểm của AE với d là H
Gọi K là tâm đường tròn ngoại tiếp tam giác AHC. Chứng minh rằng khi E di động trên cung NB thì K luôn nằm trên 1 đường thẳng cố định
Giải hộ mình bài này nhé. Mình cần RẤT GẤP!!!!!!! : Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C cắt nửa đường tròn trên tại I. K là một điểm bất kì nằm trên đoạn thẳng CI (K khác C và I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt CI tại D. Chứng minh: a) Tứ giác ACMD, BCKM nội tiếp đường tròn. b) CK.CD=CA.CB c) Gọi giao điểm của AD và nửa đường tròn (O) là N. Chứng minh B,K,N thẳng hàng. d) Tâm đường tròn ngoại tiếp tam giác AKD nằm trên một đường thẳng cố định khi K di động trên đoạn thẳng CI.
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất
Cho đường tròn (O;R) đường kính AB.M trên đường tròn (O). điểm D trên đoạn thẳng AM.BD cắt đường tròn (O) tại K( khác B).AK cắt BM tại C. CD cắt AB tại Q cmr: a) tam giác ABM vuông b)tam giác ABk vuông
1)CD⊥AB
Cho đường tròn (O;R) đường kính AB.M trên đường tròn (O). điểm D trên đoạn thẳng AM.BD cắt đường tròn (O) tại K( khác B).AK cắt BM tại C. CD cắt AB tại Q cmr: a) tam giác ABM vuông b)tam giác ABk vuông
1)CD⊥AB
Cho đường tròn (O;R) và đường thẳng d cố định, sao cho khoảng cách từ tâm O đến đường thẳng d lớn hơn bán kìn R của đường tròn O. Trên đường thẳng d lấy điểm M bất kỳ. Từ M kẻ MC là tiếp tuyến của đường tròn (O;R), C là tiếp điểm. Vẽ CH vuông góc với OM tại H, cắt (O;R) tại B.
a) Cho biết vị trí tương đối của đường tròn (O;R) và đường thẳng d? Giải thích vì sao?
b) Chứng minh: MB là tiếp tuyến của (O;R)
c) Chứng minh rằng: Khi điểm M di chuyển trên đường thẳng d thì đoạn thẳng BC luôn đi qua 1 điểm cố định.
Cho nửa đường tròn tâm O đường kính AB ,C là một điểm nằm giữa O và A đường thẳng vuông góc với AB cắt nửa đường tròn trên tại I . K là một điểm bàng kỳ nằm trên đoạn thẳng CI ( K khác C và I ), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D.
a, chứng minh : các tứ giác BCKM, ACMD nội tiếp đường tròn.
b, chứng minh: ∆ABD~∆MBC
c, chứng minh tâm đường tâm đường tròn ngoại tiếp tam giác ABC D nằm trên một đường thẳng tâm đường tròn ngoại tiếp tam giác AKD nằm trên một đường thẳng cố định Khi K di động trên đoạn thẳn
cho đường tròn tâm O đường kính AB cố định. Ax và Ay là hai tia thay đổi luôn tạo với nhau góc 60độ và lần lượt cắt đường tròn (O) tại M và N. Đường thẳng BN cắt Ax tại E, đường thẳng BM cắt Ay tại F. Gọi K là trung điểm của đoạn thẳng EF.
a. Chứng minh rằng đoạn thẳng EF có độ dài không đổi
b. Chứng minh rằng OMKN là tứ giác nội tiếp
c. Khi AMN là tam giác đều, gọi C là điểm trên đường tròn (O) khác A, khác N. Đường thẳng qua M và vuông góc với AC cắt NC tại D. Xác định vị trí của điểm C để diện tích am giác MCD là lớn nhất