Cho (O;R) và (O';r) với R < r tiếp xúc ngoài tại A. Vẻ tiếp tuyến chung ngoài BC (B thuộc (O) ; ( C thuộc (O'). Tiếp tuyến chung ngoài tại A cắt BC ở I.
a) Gọi H là giao điểm của OI và AB, K là giao điểm của O'I và AC. CM: AHIK là hình chữ nhật
b) CMR: IH.IO + IK.IO'=2Rr
c) tính sin góc BOA theo R và r
Cho hai đường tròn (O;R) và (I;r) tiếp xúc ngoài tại M (R>r).Kẻ tiếp tuyến chung ngoài BC (B∈(O);C∈(I) ).Tiếp tuyến chung trong tại M cắt BC tại K.Kẻ đường kính BE của đường tròn (O).
a)Chứng minh BK=KC và góc BME=90⁰
b)OK cắt BM tại N;IK cắt CM tại P.Chứng minh NP//BC
c)Chứng minhBC= 2\(\sqrt[]{IM.IO-IK.IP}\)
cho 2 đường tròn (O) và (O') tiếp xúc ngoài tại A (R>R'). Kẻ tiếp tuyến chung ngoài tại BC của 2 đường tròn, B thuộc (O;R); C thuộc (O',R')
a) Tam giác ABC là tam giác gì ? Tại sao ?
b) BA cắt (O';R') tại D, CA cắt (O;R) tại E. Chứng minh rằng: BC2 =BE.CD
c) Chứng mình rằng OO' là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
Cho 2 đường tròn (O1; R1); (O2; R2) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài tại BC (B thuộc O1, C thuộc O2). Tiếp tuyến chung tại A cắt BC ở I.
a) CM tam giác ABC, tam giác IO1O2 vuông và BC = 2\(\sqrt{R1R2}\)
b) Gọi R là bán kính đường tròn O tiếp xúc với BC và tiếp xúc ngoài 2 đường tròn O1, O2. CM \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}\)
Cho hai đường tròn (O,R)và (O`,r) tiếp xúc ngoài tại A kẻ tiếp tuyến chung ngoài DE của (O)và (O`), D€(O),E€(O')tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài DE ở I
a,tính số đo góc OIO'.
b, chứng minh OO' là tiếp tuyến của đường tròn đường kính DE
c, tính độ dài DE theo R và r
cho (O;r) và (O';R) tiếp xúc ngoài tại A . vẽ tiếp tuyến ngoài tại A . vẽ tiếp tuyến chung ngoài BC , tiếp tuyến chung trong tại A cắt BC tại M
a, cm tam giác ABC vuông
b, MO cắt AB tại D , MO' cắt AC tại E. cm DE=AM
c, cm MD.MO= ME.MO'
d, CM OO' tiếp xúc đường tròn đường kính BC
e, Tính BC theo R và R'
Cho đường tròn tâm O, bán kính R tiếp xúc ngoài (O';R) tại A, kẻ 1 tiếp tuyến chung ngoài cắt đường tròn tâm O tại B và O' tại C. Vẽ AH vuông góc BC. Chứng minh OC,O'B, AH đồng quy
cho hai đường tròn (O,R) và (O',R)tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài DE (D thuộc O, E thuộc O'). Đường nối tâm cắt (O) tại B cắt (O') tại C các đường thẳng BD và CE cắt nhau tại K. a, Chứng minh tứ giác ADKE là hình chữ nhật. b, chứng minh KA là tiếp tuyến chung của (O) và(O')