Cho đường tròn tâm (O;R) dây AB cố định ( AB < 2R) và C là một điểm di động trên cung lớn AB gọi N là điểm chính giữa cung nhỏ ab m là điểm chính giữa cung ac không chứa điểm b h là giao điểm của nm và ac không chứa điểm b, h là giao điểm của mn và ac k là giao điểm bm và cn
Xác định vị trí của điểm C thỏa mãn tứ giác AKBN có diện tích lớn nhất
Cho (O;R) và dây cung AB cố định không đi qua tâm O; 2 điểm C, D di động trên cung lớn AB sao cho AD//BC. Gọi M là giao điểm của AC và BD.
a) Chứng minh \(MO⊥AD\)
b) Chứng minh điểm M luôn nằm trên đường tròn cố định
c) Chứng minh đường thẳng đi qua M và // với AD luôn đi qua một điểm cố định I. Tính IO theo R và AB=R
Trong đường tròn tâm O, bán kính R, cho dây cung AB có độ dài là \(R\sqrt{3}\).M là điểm di động trên cung lớn AB. I là hình chiếu của tâm O lên AB. Gọi MN là đường kính của đường tròn và H là điểm đối xứng của N qua I.
a) Chứng minh: NBHA là hình bình hành
b) Chứng minh H là trực tâm tam giác MAB
c) Chứng minh MH có độ dài không đổi khi M di động
d) AH cắt MB tại F và BH cắt MA tại E. Chứng minh: AEFB nội tiếp
chứng minh EF song song với tiếp tuyến đường tròn tại M
Cho nửa đường tròn (O) có tâm O và đường kính AB=2R. Gọi M, N là hai điểm di động trên nửa đường (O) sao cho M thuộc cung AN và tổng khoảng cách từ A, B đến MN bằng \(R\sqrt{3}\). Gọi I là giao điểm của các đường thẳng AN và BM; K là giao điểm của AM và BN.
a) Chứng minh K, M, I, N cùng thuộc một đường tròn (C).
b) Tính độ dài MN và bán kính đường (C) theo R
c) Xác định vị trí M, N sao cho tam giác KAB có diện tích lớn nhất. Tính giá trị lớn nhất đó theo R.
Cho đường tròn tâm (O;R) và 1 dây cung AB= 2a (a<R). Gọi I là trung điểm AB. Tia OI cắt cung AB tại M. Tính độ dài của dây cung MA
Cho nửa đường tròn tâm O đường kính AB cố định. EF là dây cung di động trên nửa đường tròn đó, sao cho E thuộc cung AF và EF = AB/2 = R. H là giao điểm của AF và BE, C là giao điểm của AE và BF, I là giao điểm của CH và AB. a) Tính số đo góc CIF. b) Chứng minh AE.AC + BF.BC có giá trị không đổi khi EF di động trên nửa đường tròn
Cho vòng tròn cố định (O,R) , dây cung cố định AB. M di động trên (O). Gọi H là trực tâm tam giác MAB, I là trung điểm AB. Dựng hình vuông theo chiều dương lượng giác MHNK. Tìm quỹ tích N, giao điểm J của 2 đường chéo MN và HK.
Cho đường tròn (O;R) và dây cung AB cố định không đi qua tâm O; C và D là hai điểm di động trên cung lớn AB sao cho AD và BC luôn song song với nhau. Gọi M là giao điểm của AC và BD . Chứng minh rằng:
1) , suy ra AOMB là tứ giác nội tiếp.
2)
3) Đường thẳng d đi qua M và song song với AD luôn đi qua một điểm cố định.
Cho đường tròn (O;R). Hai điểm A , B di động trên đường tròn sao cho độ dài AB = 21 không đổi ( I < R ) . Tìm quỹ tích trung điểm M của đoạn AB