Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Phương

Cho đường tròn tâm O, đường kính AB=2R. Gọi H là trung điểm đoạn OB, trên đường thẳng (d) vuông góc với OB tại H, lấy điểm P ở ngoài đường tròn, PA và PB theo thứ tự cắt đường tròn (O) tại C và D. Gọi Q là giao điểm của AD và BC.

a, Cm Q là trực tâm của tam giác PAB, từ đó suy ra ba điểm P,Q,H thẳng hàng. 

b, Chứng minh tứ giác BHQD nội tiếp được trong một đường tròn.

c, Chứng minh DA là tia phân giác của góc CDH.

d, Tính độ dài đoạn HP theo R khi cho biết diện tích tam giác ABC bằng 2 lần diện tích tam giác AQB.

Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 8:44

a:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó;ΔACB vuông tại C

=>BC vuông góc PA

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD vuông góc PB

Xét ΔPAB có

AD,BC là đường cao

AD cắt BC tại Q

Do đó: Q là trực tâm

=>PQ vuông góc AB

mà PH vuông góc AB

nên P,Q,H thẳng hàng

b: Xét tứ giác BHQD có

góc BHQ+góc BDQ=180 độ

=>BHQD nội tiếp 

c: Xét tứ giác PCQD có

góc PCQ+góc PDQ=180 độ

=>PCQD nội tiếp

PCQD nội tiếp

=>góc CDQ=góc CPQ=góc APH

HBDQ nội tiếp

=>góc HDQ=góc CBA

mà góc CBA=góc APH(=90 độ-góc PAH)

nên góc CDQ=góc HDQ

=>DQ là phân giác của góc CDH


Các câu hỏi tương tự
Nguyễn Lê Kim Trúc
Xem chi tiết
vũ Chí Tôn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Hoàng Chí Tiên
Xem chi tiết
Hoàng Chí Tiên
Xem chi tiết
Mèo con dễ thương
Xem chi tiết
Maji Soko
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
phùng thị khánh huyền
Xem chi tiết